14.

One-dimensional transient conduction:
15.

le.

17.

18.

Consider two-dimensional steady state conduction in a region, ¥
2 cm x 2 em, with the boundary conditions as shown in Fig. 4
Problem 8.14. For the material, k = 60 W/ (mC) and there is
internal heat generation at a rate of 107 W/m?. Using finite dif-
ference method, calculate the unknown node temperatures.

A very thick copper plate (k = 386 W/(nC), aa = 11 x 10~° m?/

s) is initially at 400°C. Suddenly, its surface temperature is T=
lowered to 20°C. Considering the plate as semi-infinite plate

and using a mesh size Ax = 1 cm, calculate the temperature at x

=5 cm from the surface, 2 min. after lowering the surface tem-
perature,

A water main is buried below the surface of soil which is ini-

tially at an uniform temperature of 25°C. Suddenly, the surface
temperature drops to ~-30°C and is maintained so for a period

of 60 days. Determine the depth at which the water mains FIGURE Problem 8.14 Two-dimensional
must be placed to avoid freezing of water. Take properties of
soil as: g = 2050 kg/m®, k = 0.52 W/(mQ), C, = 1840 J/(kgK), &
= 0.138 x 107% m?/s. {Hint: Consider the soil as semi-infinite medium; calculate temperatures at distances upto 6
m below the surface and find the depth at which the temperature would be 0°C, by interpolation).

A 6 cm thick steel plate (&= 1.6 x 107 m?/s, k = 60 W/ {mC)), is initially at an uniform temperature of 250°C. It
is suddenly exposed to a cold air stream at 20°C on both the surfaces, with a heat transfer coefficient of 350 W/
{ m*C). Determine the centre plane temperature at 7 =5, 10 and 15 min. from starting of cooling. Use explicit
formulation with a mesh size of Ax = 1 om.

Two ends of a steel rod 1.2 cm diameter and 2.5 m Jong, are maintained at 250°C and 50°C and the curved ,
surface of the rod is perfectly insulated. Suddenly, an electric current is passed through the rod, causing heat '
generation in the rod at an uniform rate of 3000 W/m®. Find the temperature distribution in the rod for the first
five time increments. Take k = 35 W/(mC) and er = 1.5 x 107° m?/s.

Insuiated

steady state conduction

Two-dimensional transient conduction:

19.

20.

The L-bar shown in Fig. Problem 8.9 is initially at an uniform temperature of 200°C. its to? sutface is suddenly -
exposed to convection with an air stream at 20°C with a convection coefficient of 80 W/ (m“C). Bottom surface is
maintained at 200°C throughout and the left and right surfaces are insulated as shown. Taking k = 15 W/(mC)
and @=3.2x 107% m?/s, calculate the temperature of node 3 after 1, 3, 5, 10 and 30 min. Use explicit formuiation.
A steel bar of 3 cm x 3 em cross-section is initially at an uniform temperature of 500°C. (&= 1.0 x 107° m%/s, k =
35 W/(mC}). Suddenly, all the 4 surfaces of the bar are exposed to an air stream at 20°C with a heat transfer
coefficient of 120 W/(m”C). Using explicit formulation and a mesh size of Ax = Ay = 0.5cm, calculate the centre
temperature at 7=1, 5 and 10 min. after the start of cooling. (Hint: Use symmetry consideration—consider only
a quarter of the cross-section). :
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CHAPTER

Forced Convection

9.1 Introduction

In the previous chapters, we studied about conduction heat transfer, where heat transfer was a molecular phe-
nomenon and was considered mainly in solids; convection was mentioned only in passing and was considered
only as a boundary condition while analysing conduction heat transfer.

In convection heat transfer, there is a flow of fluid associated with heat transfer and the energy transfer is
mainly due to bulk motion of the fluid. When the flow of fluid is caused by an external agency such as a fan or
pump or due to atmospheric disturbances, the resulting heat transfer is known as ‘Forced convection heat trans-
fer’; when the flow of fluid is due to density differences caused by temperature differences, the heat transfer is
said to be by “Natural {or free) convection’. For example, if air is blown on a hot plate by a blower, heat transfer
occurs by forced convection, whereas, a hot plate simply hung in air will lose heat by natural convection.

In this chapter, we shall study about forced convection heat transfer. Since there is a flow of fluid involved
in convection heat transfer, it is clear that the flow field will influence the heat transfer greatly. Mathematical
solution of convection heat transfer will, therefore, require the simultaneous solution of differential equations
resulting by the application of conservation of mass, conservation of momentum and conservation of energy,
under the constraints of given boundary conditions. For a three-dimensional fluid flow, mathematical solution of
the resulting differential equations is a formidable task and it is usual to make many simplifying assumptions to
get a mathematical solution. Still, it must be stated that exact mathematical solutions, even for simple convection
heat transfer cases, are rather complicated and it is common practice to resort to empirical relations for solutions
of problems involving convection heat transfer. These empirical relations are obtained by researchers after per-
forming large number of experiments for several practically important situations and are presented in terms of
non-dimensional numbers.

In this chapter, we shall first describe the physical mechanism of forced convection and then mention about
the convective heat transfer coefficient and various factors affecting the same. Then, we shall discuss about veloc-
ity and thermal boundary layers. Application of conservation of mass, momentum and energy in respect of the
boundary layer will be demonstrated next. We shall not rigorously solve these equations, but will only mention
the methods of solution, since our emphasis will be on practical solutions with the use of empirical relations.
Then, we present several empirical relations to determine friction and heat transfer coefficients for flow over
different geometries such as a flat plate, cylinder and sphere for flow under laminar and turbulent conditions.
Finally, flow inside tubes will be considered and determination of heat transfer coefficient by analogy with the
mechanism of fluid flow will be explained.

9.2 Physical Mechanism of Forced Convection
Consider a hot iron block whose surface is at a temperature T,. Let this surface be cooled by a fluid at a tempera-
ture T,, flowing over its surface at a velocity U, as shown in Fig. 9.1.

We know that heat will be carried away from the hot iron block by the flowing fluid and the block will cool.
We also know that if the velocity of the fluid is increased, more heat is carried away and the block will be cooled
faster. For the purpose of analysis, we quantify the preceding statement by a dimensionless number called,
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FIGURE 9.1 Temperature and velocity distribution in laminar, forced convection over a hot block

“Reynolds Number’, in honour of Osborne Reynolds, an English scientist. Reynolds number is defined as fol-
lows:
Re=UZE" .(9.1)
H

where U = mean velocity of flow, m/s

p = densiy of fluid, kg/ m?

# = dynamic viscosity of fluid, kg/{ms), and

x = a characteristic dimension of the flow passage, equal to the linear distance along the flow direction
in the case of a flat plate or the pipe diameter in the case of a flow through a pipe. For non-circular passages (such
as a square or rectangular passage), the characteristic dimension in Eq. 9.1 is the ‘equivalent diameter’, defined
as:

d, = 4;‘ . {9.2)
where d, = equivalent diameter, m
A, = area of cross-section, m?, and
P = wetted perimeter, m
For a rectangular cross-section of breadth “a” and height ‘¥, we get from Eq. 9.2:
_ 4A.  dab _ 2ad (92,)

*T P 2(a+b) (a+h)
And, for an annulus formed by a tube of outer diameter d, placed within a tube of inner diameter d;, equiva-
lent diameter is calculated as:

pid
L} - dp)
4.4 - d,
m-(dy +da)

Note that Eq. 9.2 is used in connection with the calculation of pressure drop for flow through an annulus;
but, for the case of heat transfer, say from a hot fluid flowing through the inner tube to a cold fluid flowing
through the outer tube, since the heat transfer occurs only through the surface of the inner tube, we use for the
equivalent diameter:

d, = s {9.2,b)

4 i
d, =4 = (9.2
JT‘d] dl ( C)

If the Reynolds number is below a certain value, as determined by experiments, the flow is laminar; i.e. the
fluid layers move parallel to each other in an orderly manner. As the velocity of flow increases, i.e. as the value

FORCED CONVECTION




of Reynolds number increases, there is more disorder in the fluid and the fluid flow becomes ‘turbulent’; fluid
‘chunks’ move at random and obviously the heat transfer increases, since these chunks of fluid carry the heat
with them. Transition from laminar to turbulent flow occurs not at a fixed value of Reynolds number, but occurs
in a range called ‘transition range of Reynolds numbers’. For example, for flow through a pipe, at values of
Reynolds number below 2300 the flow is laminar, for values above 4000 the flow is turbulent and in between is
the transition range. Value of Reynolds number is affected by fluid properties, dimension of flow passage and’
also by surface conditions.

Fig. 9.1 also shows the velocity profile and the temperature profile for laminar flow. The velocity profile is
parabolic. As the flowing fluid comes in contact with the surface of the block, a thin layer adheres to the surface
and essentially remains stationary with zero velocity; this phenomenon is known as ‘no slip condition” in the
terminclogy of fluid mechanics. The fluid layer adjacent to this layer has its velocity retarded as compared to the
free stream velocity due to the effect of viscosity of the fluid, and the next layer has slightly higher velocity, etc.
till the free stream velocity is attained at a layer farther away from the surface. The point we are trying to make
here is that immediately next to the solid surface, there is essentially a stationary layer of fluid and the heat
transfer through this fluid layer is by ‘pure conduction’; subsequently, since the next layers of fluid are in motion
convection heat transfer occurs.

For this stationary fluid layer, the heat flux is given by Fourier's law:

Feond = —k_f (dT/‘dF) Iy’:(] ---(9.3)
where k; is the thermal conductivity of the fluid and (dT/dy) | y=n is the temperature gradient at y = 0 i.e. at the
surface.

9.3 Newton's Law of Cooling and Heat Transfer Coefficient
Governing rate equation for convection heat transfer is given by “Newton’s Law of Cooling’ (also known as
‘Newton-Rikhman Law’). According to this law, the heat flux in convection heat transfer is given by:

Foome = h'{Ts - T.;) -..(9.4)
where h is the convective heat transfer coefficient and (T, - T,} is the temperature difference between the hot
surface and the flowing fluid. Unit of k is: W/{m’C) so that the heat flux has units of W/m?

Though Eq. 9.4 looks very simple, it is very subtle. The reason is: heat transfer coefficient, fi, depends on
several factors such as:
(i) the fluid properties like density, viscosity, thermal conductivity and specific heat,
(ii) type of flow (laminar or turbulent),
{iii) shape of fluid passage (circular, rectangle or a flat surface),
(iv} nature of the surface (rough/smooth) and
(v} orientation of the surface
In fact, entire thrust in determining the heat transfer rate in convection is to find out this value of 4’ in a
reliable manner.

9.4 Nusselt Number

Since we know that adjacent to the solid surface the fluid layer is stationary and the heat transfer in this fluid
layer is by conduction, and the heat transferred by convection subsequently must be equal to this fluid layer, we
can equate Eqgs. 9.3 and 9.4

We can write:

B= ok @T/dy) L, o) /(T, = T,) (9.5)
Le. the problem of finding out the value of %’ reduces to the task of finding out the temperature gradieui (dT/dy)
at y = 0 i.e. at the surface.

Since the heat transfer coefficient depends on flow conditions, its value on a surface varies from point to
point. However, we generally take an average value of "k’ by properly averaging the local value of heat transfer
coefficient over the entire surface.

It is also common practice to non-dimensionalise the heat transfer coefficient with ‘Nusselt number’. Nusselt
number is defined as:

...(9.5)

h-&
Nu = 8
ky
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where dis a characteristic dimension and k; is the fluid thermal conductivity.

To get a physical interpretation of the Nusselt number, consider a thin layer of fluid with thickness § and with a
temperature difference of AT between the two surfaces. Then, we have:
, h-AT h-&
Geany _ _ = Nu ...(9.6)

Heond kf . A T k_r'
&

[n other words, Nusselt number tells us how much the heat transfer is enhanced due to convection as com-
pared to only conduction. Or, higher the Nusselt number, larger the heat transfer by convection. If Nu = 1, it
means that heat transfer is by conduction alone.
Exumate 2.1, Ailr at 25°C fiows over a flat surface maintained at 65°C. Temperature measured at a location of 0.3 mm
from the surface is 45°C. Find out the value of the local heat transfer coefficient, Thermal conductivity of air at the
average temperature may be assumed as 0.027 W/(mC).
Solvtian,
Data:

T, =25°C T, =65°C o= 00003 m AT =45 - 65 = - 20°C ke = 0.027 W/(mC)

Now, to find out heat transter coefficient, apply Eq. 9.5:

= (ke (4T dy), b/ (T~ T)) {9.5)
Now,
a7 = -2 C/m (temperature gradient at the surface i.e. at y = 0)
dy 0.0003 y ;
ie. a_ 6.667 » 10 C/m
dy

(Note that temperature gradient is negative since, starting from the plate surface, as we proceed in the y direction,
T decreases as y increases.)

Therefore,
_ 0.027 x 6.667 x 10°

40
ie. h = 45.002 W/(m*C).

I

from eqn. (9.5)

9.5 Velocity Boundary Layer

Concept of ‘boundary layer” was introduced by Ludwig Prandtl in the year 1904. According to this concept,
when a fluid flows over a surface, the flow field can be considered to be divided into two regions: one, a thin
layer adjacent to the solid surface, called the boundary layer’, where the viscosity effects are predominant and
velocity and temperature gradients are very large, and second, a layer beyond the boundary layer where the
velocity and temperature gradients are equal to their free stream values. The boundary layer thickness (8) is
arbitrarily defined as that distance from the surface in the y-direction at which the velocity reaches 99% of the
free stream velocity, U. Boundary layer concept helps in simplification of momentum equations and, in particu-
lar, solution of viscous flow problems was greatly facilitated by this concept.

Let us fitst study the development of boundary layer for a flow over a flat plate. Flow over a flat plate is
important from a practical point of view, since flow over turbine blades and aerofoil sections of air plane wings
can be approximated as flow over a flat plate. See Fig. 9.2

Consider a thin, flat plate. The leading edge and the trailing edge of the plate are shown in the Fig. 9.2. Let
a fluid approach the flat plate at a free stream velocity of L. The fluid layer immediately in contact with the plate
surface adheres to the surface and remains stationary, and in fluid mechanics, this phenomenon is known as ‘no
slip” condition. Then, the fluid layer next to this stationary layer has its velocity retarded because of the viscosity
effects i.e. due to the frictional force or ‘drag’ exerted between the stationary and the moving layers. This effect
continues with subsequent layers upto some distance in the y-direction till the velocity equals the free stream
velocity U. This region of fluid layer in which the viscosity effects are predominant is known as the ‘velocity {(or
hydrodynamic) boundary layer’, or simply the 'boundary layer’. Thickness of the boundary layer is arbitrarily
defined as that distance in the y-direction from the plate surface at which the velocity is 99% of the free stream
velocity. Note the following points in connection with the boundary layer:
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(iii)
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]
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FIGURE 9.2 Development of boundary layer over a flat plate

The boundary layer divides the flow field into two regions: one, ‘the boundary layer region’ where the
viscosity effects are predominant and the velocity gradients are very steep, and, second, ‘the inviscid
region’ where the frictional effects are negligible and the velocity remains essentially constant at the free
stream value.

Since the fluid layers in the boundary layer travel at different velocities, the faster layer exerts a drag
force ( or frictional force) on the slower layer below it; the drag force per unit area is known as ‘shear
stress (7)". Shear stress is proportional to the velocity gradient at the surface. This is the reason why, in
fluid mechanics, the velocity profile has to be found out to determine the frictional force exerted by a
fluid on the surface, Shear stress is given by:

T, = y(d—u] N/m? 9.7
dy y=0

where g is ‘dynamic viscosity” of the fluid; its unit is kg/(ms) or N.s/ m> Viscosity is a measure of
resistance to flow. For liquids, viscosity decreases as temperature increases, whereas for gases, viscosity
increases as the temperature increases. Viscosities of a few fluids at 20°C are given in Table 9.1. It may be
observed that viscosity varies by several orders of magnitude for different fluids.

Use of Eq. 9.7 to determine the surface shear stress is not very convenient, since it requires a mathemati-
cal expression for the velocity profile; so, in practice, surface shear stress is determined in terms of the
free stream velocity from the following relation:

UZ
7 = cf'izw, N/m? .(98)

TABLE 9.1 Dynamic viscosity of a few fluids at 20°C

i
Glycerin 1.49
Engine oil 0.80
Ethyl alcoho! 0.00120
Water 0.00106
Freon-12 0.000262
Air 0.0000182
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(iv)

(v}

(vi)

{vii)
{viii)
(ix)
{x)

{xi)

where C; is a ‘friction coefficient’ or ‘drag coefficient’. p is the density of the fluid. C; is determined
experimentaily in most cases. Drag coefficient varies along the length of the flat plate. Average value of
drag coefficient (Cy,) is calculated by suitably integrating the local value over the whole length of the plate
and then the drag force over the entire plate surface is determined from:
2
Fp= Cfu‘A-%, N ..(9.9)
where A = surface area, m”.
Starting from the leading edge of the plate, for some distance along the length of the plate, the flow in the
boundary layer is ‘laminar’ i.e. the layers of fluid are parallel to each other and the flow proceeds in a
systematic, orderly manner. However, after some distance, disturbances appear in the flow and beyond
this “transition region’, flow becomes completely chaotic and there is complete mixing of ‘chunks’ of fluid
moving in a random manner i.e. the flow becomes “turbulent’. '
Transition from laminar to turbulent flow depends primarily on the free stream velocity, fluid properties,
surface temperature and surface roughness, and is characterized by ‘Reynolds number’. Reynolds
number is a dimensionless number, defined as:
Re = (Inertia forces/Viscous forces)
Or,
U-x
v

where LI = free stream velocity, m/s

x = characteristic length i.e. for a flat plate it is the length along the plate in the

flow direction, from the leading edge, and

v = kinematic viscosity of fluid = z#/p, m?/s, where pis the density of fluid.
When the Reynolds number is low, i.¢. when the flow is laminar, inertia forces are small compared to
viscous forces and the velocity fluctuations are ‘damped out’ by the viscosity effects and the layers of
fluid flow systematically, parallel to each other. When the Reynolds number is large, i.e. when the flow is
turbulent, inertia forces are large compared to the viscous forces and the flow becomes chaotic. For a flat
plate, in general, for practical purposes, the ‘critical Reynolds number, Re, at which the flow changes
from laminar to turbulent is taken as 5 x 10°. It should be understood clearly that this is not a fixed value
but depends on many parameters including the surface roughness,
There is intense mixing of fluid particles in turbulent region; therefore, heat transfer is more in turbulent

Re = ..{9.10)

flow as compared in laminar flow. This is the reason why special efforts are made in the design of heat

exchangers to increase turbulence. However, one has to pay a premium of increased pressure drop i.e.
increased power to pump the fluid through the heat exchanger.

Velocity profile in the laminar flow is approximately parabolic.

Turbulent region of boundary layer is preceded by transition region as shown in Fig. 9.2,

Turbulent boundary layer itself is made of three layers: a very thin layer called ‘laminar sub-layer’, then,
a ‘buffer layer’ and, finally, the ‘turbulent layer’.

Velocity profile in the laminar sub-layer is approximately linear, whereas in the turbulent layer the veloc-
ity profile is somewhat flat, as shown.

Thickness of the boundary layer, , increases along the flow direction; as we shall see later, &is related to
the Reynolds number as follows: in the laminar flow region:

5x
S = (Re )0_5 ...(9.11)
x
and for turbulent flow region:
0.376-x
urb = (_RE )0'2 ...(9.12)
X

where Re, is the Reynolds number at position x from the leading edge.
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9.6 Thermal Boundary Layer
When the temperature of a fluid flowing on a surface is different from that of the surface, a ‘thermal boundary
layer” develops on the surface, in a manner similar to the development of the velocity boundary layer. Let us
illustrate the development of the thermal boundary layer with reference to a flat plate. See Fig. 9.3.

Consider a fluid at an uniform velocity of L and a uniform temperature of T, approach the leading edge of
a thin, flat plate as shown. Let the flat plate be at a uniform temperature of T, Let T, > T,. Then, the first layer that
comes in contact with the surface will adhere to the surface {no slip condition) and reach thermal equilibrium
with the surface and attain a temperature of T,. Then, the fluid particles in this layer will exchange energy with
the particles in the adjoining layer, which in turn will exchange energy with the subsequent layer, and so on.
Thus a temperature profile will develop in the flow field and the temperature will vary from T, at the surface to
T, at the free stream. In Fig. 9.3, the term (T - T} is plotted against y as shown. Thus at the surface, (T — T)=0
and at the free stream condition, (T ~ T.) = (T, - T,). The region in which the temperature variation in the y-
direction is significant is known as ‘thermal boundary layer’. Thickness of the thermal boundary layer () at any
location is defined as that distance from the plate surface in the y-direction where (T - T) = 099 x (T, - T). i.e
where the temperature difference between the fluid and the surface has reached 99% of the maximum possible
temperature difference of (T, - T,). In other words, at the outer edge of the thermal boundary layer, the
dimensionless temperature ratio, (T - T)/(T, - T,) is equal to 99%.

Thickness of the thermal boundary layer increases with increasing distance along the plate; this is due to the
fact that effects of heat transfer are felt more, further downstream.

If the approaching fluid stream temperature T, is less than the plate surface temperature, then the tempera-
ture profile in the thermal boundary layer will be as shown below, in Fig. 9.4:

X
FILuIidTﬂow T-T, /Tﬂ - Ty
s T,-T, F - / Temperature
- fil
;;j T-T, _ --\N\j/ r?& profile
i A /
P
Leading edge Fiat plate at T Trailing edge

FIGURE 9.3 Development of thermal boundary layer over a flat plate

—
[ Ta<Ts

, Temperature profile

FIGURE 9.4 Thermal boundary layer over a flot plate when T < T,
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Temperature of the fluid changes from a maximum at the plate surface to the free stream temperature, as we
proceed from the surface upwards in the y-direction. Vertical distance from the plate surface where the ratio (T,
- TY/{T, - T,)) is equal to 99% represents the thickness of the thermal boundary layer.

Velocity profile in the hydrodynamic boundary layer depends on the viscosity of the fluid, whereas tem-
perature profile in the thermal boundary layer depends on the viscosity, specific heat and thermal conductivity
of the fluid, in addition to the velocity.

Relative magnitudes of the thicknesses of the hydrodynamic boundary layer {J) and thermal boundary layer {4,)
depend on the dimensionless parameter ‘Prandtl number’ defined as:
Pr = (Molecular diffusivity of momentum)/(Molecular diffusivity of heat)

Or,

.C?
pr=to (9.13)
leg k

where g is dynamic viscosity, C, is the specific heat and & is the thermal conductivity of the fluid.

Also, vis kinematic viscosity = /0, and ¢ is the thermal diffusivity.
Prandtl number is of the order of 1 for gases, less than 0.01 for liquid metals and more than 100,000 for
heavy oils. See Table 9.2.

TABLE 9.2 Range of Prandtl numbers for fluids

Fluid Pr

Liquid metals 0.004 - 0.030
Gases 0.7-10
Water 1.7 - 13.7
Light organic fluids 5 — 50

Qiis 50 — 100,000
Glycerin 2000 - 100,000

Regarding the relative growth of velocity and thermal boundary layers in a fluid, we may note the follow-
mg:
(i} For gases, where Pr = (v/ a} is of the order of 1, we see that the momentum and heat dissipate almost at
the same rate i.e. thicknesses of the hydrodynamic and thermal boundary layers are of the same order;

(if) for liquid metals since Pr << 1, it means that heat diffuses at a much higher rate than the momentum for
liquid metals i.e. the thermal boundary layer is much thicker than hydrodynamic boundary layer for
liquid metals (See Fig 9.5,a), and, .

(ili) for heavy oils (Pr >> 1), momentum diffuses at a faster rate than heat through the medium and this is
evident from Fig. (9.5,b); thus, the thermal boundary layer is much thinner than hydrodynamic boundary
layer.

For laminar conditions, thickness of thermal boundary layer is related to hydrodynamic boundary layer,
approximately as follows:

Pr << |—Pl>> 11

(a) Liquid metals (b} Qils

FIGURE 9.5 Thermal and velocity boundary layers over a flat plate for liquid metals and oils
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PR ..{9.14)

[
)
where Pr is the Prandt] number.

9.7 Differential Equations for the Boundary Layer

In convection studies, since there is a fluid flow, we are interested in the shear stress and the friction coefficient;
to determine these we need the velocity gradient at the surface. Similarly, to determine the convection coefficient,
we need the temperature gradient at the surface. To determine the velocity gradient at the surface, we apply the
equation of conservation of momentum (in conjunction with the equation of conservation of mass) to a differen-
* tial volume element in the boundary layer. And, to determine the temperature gradient at the surface, we apply
the equation of conservation of energy to a differential volume element in the boundary layer. We start with the
application of equation for conservation of mass:

9.7.1 Conservation of Mass-The Continuity Equation for The Boundary Layer

Consider a differential control volume, of section (dx.dy) and unit depth, within the boundary layer, as shown in
Fig. 9.6.

plv + {avidy).dy]

Elemental control
volume, (dx.dy.f)

PU-—m gy —» plu + (dulfdx).dx]
ax

pv

FIGURE 9.6 Elemental control volume in the boundary layer over a flat plate for conservation of mass

Assumptions:
(i) Flow is steady, incompressible
(ii) Constant fluid properties
(iii) Pressure variation is only in the X-direction
(iv) Shear in Y-direction is negligible
(v) Continuity in space and time
Let « and v be the velocity components in the X and Y-directions. Then, remembering that the mass flow
rate is given by (density x velocity x area) and that the depth is unity in the Z-direction, we can write:
Mass flow into the control volume in X-direction = p-u{dy.1)
Mass flow out of the control volume in X-direction = p.[u + (Ju /9x).dx).(dy.1)
Therefore, net mass flow into the element in the X-direction = - g.(91/ ox).dx.dy
Similarly, net mass flow into the control volume in the Y-direction is = —p.(dv/3y).dy.dx
Since the net mass flow into control volume, in steady state, must be equal to zero, we write:
—-p\(du/ox) + (dv/dyldxdy =0

Le. for a two-dimensional flow in the boundary layer, equation of conservation of mass is given by:
(Bu/ox) + (dv/oy) =0 .nr(9.15)

Eq. 9.15 is known as ‘continuity equation’ for two-dimensional, steady flow of an incompressible fluid.
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9.7.2 Conservation of Momentum Equation for The Boundary Layer

This is obtained by the application of Newton's second law of motion to the differential element, which states
that the net force on the element in the X-direction is equal to the net momentum efflux from the control volume
in the X-direction. Fig. 9.7 shows the momentum fluxes and forces acting on the differential control volume.

— plv + {ovidy).dy].[u + (duidy).dy]

{p.u).t—p o :-————p plu + (9u/ax).dx].[u + (owax).dx]
S1odx

{pu).v —-

(a) Momentum fluxes

——— T = L{(OuRY) + (9/9y) (Bufdy).dy}

p—»idy (— [p + (dp/ox).dx]
-odx
«—— 1, 1.(duidy)
{b} Forces

FIGURE 9.7 Conservation of mormentum in a two-dimensional, incompressible boundary layer

For no pressure gradients in the Y-direction and with the assumption that viscous shear in the Y-direction is
negligible,

Momentum flow in X-direction into left face = p.u’dy

Mamentum flow in X-direction out of right face = p.Ju+ (du/ ax).dxlz.dy

= p.uz.dy + 2.pu. (ou/ox)dx.dy
x-momentum flow entering bottom face = p.u.v.dx
x-momentum flow leaving upper face = p.fo + (dv/dy).dyl.[u + (Ju/dy).dyl.dx
= pauvdx + pu(de/dy)dxdy + po.ou/dy).dxdy

Therefore, net momentumn change in the X-direction =
[momentum flux out of the right and top faces] - [momentum flux into the left and bottom faces]

= [puldy + 2.pan(Ou/dx)dedy] + [pu.vdx + pu{dv/dy).dxdy + pvidu/dy).dx.dyl

- putdy — paen.dx

= 2.p.(0u/0x).dx.dy + p.uidv/dy)dxdy + po.(du/dy)dedy

= pju.0u/3x) + v.du/dy)ldx.dy + pul{ou/ ox) + (0v/dy)hdx.dy

Now, from continuity Eq. 9.15, we have: (du/dx} + (dv/dy) = 0; Therefore, net momentum transfer in the X-
direction = p{u.(9u/8x) + v.(du/dy)l dx.dy ...(a)
Now, let us calculate the forces acting on the contrel volume in the X-direction:
Pressure forces:
Pressure force on the left face is p.(dy.1) and over the right face is

—[p + (Ip/dx)dx].(dy.1)

Therefore, net pressure force in the direction of motion is: ~(dp/dx).dx.dy

And,
Viscous shear forces:

Viscous shear force at the bottom face is: g(du/oy).(dx.1)
Viscous shear force at the top face is: [u(du/dy) + p(azu/ayl).dyl.(dx.l)
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Therefore, net viscous force in the direction of motion =

[13u/3y) + (0 u/3y*).dyl.(dx.1) - p(@u/dy).(dx.1) = p(d%u/3P).dx.dy
Therefore,
F, = Resuitant applied force in the X-direction =
Net pressure force in the X-direction + net viscous force in the X-direction

ie. F, = —(@p/9x)dx.dy + 1(d%u/dy").dx.dy ..(b)
Equating Egs. a and b as per Newton’s second law, and neglecting second order differentials, we get:
plu.(u/3x) + v.@u/y) = 1(3%u/ 3y - @p/dx). ...(3.16)

Eq. 9.16 is known as ‘conservation of momentum equation’ for two-dimensional, steady flow of an incom-
pressible fluid.
If the pressure variation in the X-direction is negligible, (which is true for flow over a flat plate since (3L/9x)
= 0), Eq. 9.16 reduces to:
w.(Au/ dx) + v{du/ dy) = v.(0%u/ ). ..(9.17)
where v= u/p = kinematic viscosity

9.7.3 Conservation of Energy Equation for The Boundary Layer
Assumptions:
(i) steady, incompressible flow
(ii) conduction is only in the Y-direction
(iii} temperature change in the X-direction is small i.e. negligible conduction in flow direction
(iv) specific heat (C,) of the fluid is constant
{v) negligible viscous heating
{vi) negligible body forces
Fig. 9.8 shows the rate at which energy is conducted and convected into and out of the differential control
volume.
Note that in addition to the conductive terms, there are four convective terms.
Let us write the different energy terms and apply the energy balance which states that net rate of conduction
and convection should be equal to zero:
Convective terms:
For the X-direction:
Energy into the control volume = p.C,u.T.dy
Energy out of the control volume = P-Cp{u + (Bu/9x).dx}{T + (9T/9x) dx}.dy
Therefore, neglecting the product of differentials, net energy convected into the control volume in the X-
direction is given by: —p. C,.{u.(0T/3x) + T.(9u/dx).dx.dy
Similarly, net energy convected into the control volume in the Y-direction is given by:
-pCp.lo. (0T/9y) + T.(dv/oy)} dx.dy
Conductive terms:
Conduction in Y-direction.

—k.dx {(aTIy) + (3 TIay").dy} p-Cp{v + (9vidy).dy}{T + (87/3y).dy}.dx
p.CouTdy — 3l b3 p.Cyfu + (Bulax).dX){T + (3T7ox).dx}.dy
dy
~kdy@TOX) —————W P Ky {(3TIx) + (3" TIOx).dx}

~k.dx.(aT/dy} p.Cpv.Tdx

FIGURE 9.8 Conservation of energy in a two-dimensional, incompressible boundary layer
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Net conduction into the control volume in the Y-direction is given by:
- kdx.@T/dy) — [-kdx.{(3T/dy) + T/ )dy) = k. (3°T/3y?).dx.dy
Similarly, for completeness, net conduction into the control volume in the X-direction is given by:
k. (2T /9x%).dx.dy -
When the viscous work is neglected, making an energy balance, we have:
Algebraic sum total of heat flow to the control volume due to conduction and convection must be equal to
ZEero.
ie.
-p.CpluA{dT/dx) + T.(du/3x)}.dxdy - p.Cp.{U.(BT/By) + T.(dv/dy)l.dxdy + k.(azT/axz).dx.dy
+ k. (3*T/3y)).dxdy = 0
ie.
-pCp.{u. (0T/9x) + T.(du/dx) + v.(dT/dy) + T.(0v/dy)) dx.dy +
k@ T/axY) + (071 /0y )}dx.dy = 0
ie.
~p.C,.lu. @T/3x) + v.00T/3y) + T.[@u/3x) + (Bv/Ay)]+ k.@'T/3x) + (@*T/3y))} = 0
Now, from continuity equation, (du/3x) + (dv/dy) = §; also, since the boundary layer is very thin, (9T/dy)
>> (8T/9x). (i.e. conduction in X-direction is negligible).
Therefore, energy balance equation becomes:
u. 3T/3x) + v.T/3y) = (k/p.C,). (3*T/9y")

or,

w.(dT/9x) + v. (@T/9y} = a’.(E)ZT/ayz), where o= ;_% = thermal diffusivity ...{9.18)
-
This is the energy equation for a two-dimensional, steady incompressible flow, when the viscous dissipa-
tion is neglected, i.e. for very low velocities of flow.
Observe the similarity between Eq. 9.17 for momentum balance and the Eq. 9.18 for energy balance.

In Eq. 9.17, v = ¢/ p = kinematic viscosity, also known as momentum diffusivity. In Eq. 9.18, @is the diffu-
sivity of heat. Their ratio is known as Prandtl number and is equal to:

Pr=v/a={u/p)/kip.C) =C,ulk .-.(9.19)

If v= g then Pr=1 and the momentum and energy equations are identical; thus, Prandtl number controls
the relation between the velocity and temperature distributions.

When the viscous dissipation cannot be neglected, as in the case of very viscous fluids (e.g. in journal bear-
ings), or when the fluid shear rate is extrerely high, an additional term for “viscous dissipation, ¢ * appears on
the LHS of the energy balance. ¢ is given by:

@ = 1i[@u/dy) + @v/3x))* + 2.[Eu/3x)? + Bv/dy)] - 2/3)1(u/dx) + Pv/3y)]* .(9.20)

We shall not consider viscous dissipation in our discussions.

9.8 Methods to Determine Convective Heat Transfer Coefficient
As stated earlier, in convection heat transfer analysis, the primary problem is to determine the heat transfer
coefficient. Once this quantity is determined, heat transfer rate from the surface is easily determined by applying
Newton's law.
There are generally, five methods available to determine the convective heat transfer coefficient:
(i) dimensional analysis in conjunction with experimental data
(i) exact mathematical solutions of boundary layer equations
(iii) approximate solutions of boundary layer equations by integral methods
(iv) analogy between heat and momentum transfer, and
(v) numerical analysis
Of course, none of them can by itself, solve all the problems we come across in practice, since each method
has its own limitation.
Of the above mentioned methods, ‘dimensional analysis’ is mathematically simple, but has the disadvan-
tage that it does not give any insight into the phenomenon occurring; also, it does not give any equation that can
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be solved, but requires experimental data to get the coefficients in the equations. However, this method helps in
the interpretation of the experimental data and extends the range of applicability by expressing the data in terms
of dimensionless groups.

‘Exact solutions of boundary layer equations’ involve simultaneous solutions of differential equations de-
rived for the boundary layer. These are rather complicated and solutions are available for a few simple flow
situations, such as flow over a flat plate, an airfoil, or a circular cylinder, in laminar flow. Describing the turbu-
lent flow mathematically is rather difficult. We shall only give an outline of this method, since our emphasis is on
practical solutions to convection heat transfer problems by using empirical relations.

"Approximate solutions for boundary layer equations’ consider a finite control volume for analysis, rather
than an infinitesimal control volume, and integral equations are derived; however, sclution requires assuming
equations to describe the velocity and temperature profiles satisfying the boundary conditions. This method is
relatively simple, and it is possible to get solutions to problems that cannot be treated by exact method of analy-
sis. This method can be applied to turbulent flow also.

‘Analogy between heat and momentum transfer’ is a very useful tool to deduce the convective heat transfer
coefficient by the knowledge of flow friction data only, particularly for turbulent flows, without actually conduct-
ing heat transfer experiments. This method utilizes the fact that the momentum and energy equations have the
same form, under certain conditions, and therefore, the solutions also must have the same form. Further, it is
simple to conduct flow {friction) experiments, as compared to heat transfer experiments,

‘Numerical methods’ involves discretizing the differential equations and ate therefore approximate, Solu-
tions are obtained at discrete points in time and space rather than continuously; however, accuracy can be im-
proved to acceptable levels by taking sufficiently close grids. Main advantage of numerical methods is that
variation in fluid properties and boundary conditions can be easily handled.

9.8.1 Dimensional Analysis

Dimensional analysis considers the various quantities that contribute to the phenomenon and reduces these vari-
ables into dimensionless groups; however, dimensional analysis alone is not of much use, and this method must
always be supplemented by experimental data since to determine the coefficients in the functional relationships
between the dimensionless groups we need actual, practical data. Also, it is necessary to have some insight into
the problem before we start the analysis, since we have to first list the pertinent variables that influence the
phenomenon. Once this is done, mathematics involved is minimum, and the method can be applied routinely to
most of the problems.

9.8.1.1 Primary dimensions and dimensional formelos, Fundamental axiom of dimensional analysis is that equa-
tions describing a physical phenomenon must be dimensionally homogeneous (i.e. dimensions of the two sides
of the equation are identical} and units therein must be consistent.

‘Dimension’ is a qualitative expression whereas unit is quantitative. For example, when the distance be-
tween two points is spoken of as ‘length’ it is qualitative; instead, if we say that the distance is so many metres or
kilometres or miles, we are speaking in terms of ‘Units’.

In S1. system, there are four ‘primary dimensions’ viz. Length (L), Mass (M), Time (t) and Temperature (T).
Other derived quantities can be expressed in terms of these primary dimensions. Dimensional formula for a
physical quantity is obtained from its definition or from physical laws involved. For example,

Dimension of length of a bar: [L]

Dimension of velocity: Distance /time: [L/t] = L.t™

Dimension of Force: Mass x acceleration = [M.L/t*] = [M. L. t'%]

Dimension of Work : Force x distance : [M. L. t *].L = [M. L% t 3]

Dimension of Power : Work/time : = [M. L2t ..., etc.

Table 9.3 shows a few physical quantities, their symbols, units and dimensional formulas.

98.1.2 Budkingham 7 theorem. This theorem is used to determine the number of independent dimensionless
groups that can be obtained from a set of physical quantities that govern a given phenomenon.

According to this rule, if the number of pertinent physical variables governing a phenomenon is ‘n’, and the
number of primary dimensions to express the dimensional formulas of these # quantities is ‘mr’, then, the number
of independent dimensionless groups that can be formed by combining these physical quantities is given by (n -
m). If these dimensionless groups are designated by 7, 7, ..., etc. then, relation between them can be expressed

as:

Fim, y, 13 ...) = 0 : {921
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TABLE 9.3 Some physical quantities of importonce in heat transfer and their dimensions

Mass M kg M
Length L, dD x m L

Time LT s t
Temperature T8 K T

Area A m? L?
Volume 1 m? L3
Velocity viu m/s Lt
Acceleration a m/s? Lt
Force F N M Lt
Work w Nm{=J) M L3%2
Power P W(=J/s) M L3
Density P kg/m® ML~®
Pressure, stress po N/m? MLt2
Viscosity U kg/(ms) ML Y
Kinematic viscosity (= ip) ms 2!
Specific heat & JikgK L2rert
Thermal conductivity k W/H{mK) MLt 3T~
Thermai diffusivity o m?/s L3
Heat transfer coefficient h W/(m2K) Mt=3T!
Coefficient of volume expansion Fii 1K T

For example, if in a problem, there are 5 physical quantities which are described by 3 primary dimensions only,
then there are {5 — 3 ) = 2 dimensionless groups and the solution is of the form:
F{m, m) =10. ...{9.22)
Or,
x, = f(m) ...{9.23)
Then experimental data can be presented by plotting #; against 7.
If there are 3 dimensionless groups in another problem, the solution is of the form:
F(m, 7, m3) = 0. ..(9.24)
Or,
7y = f(my, ) ...{9.25)
Now, experimental data can be presented by plotting 7, against 7, for different values of ;.
While applying the Buckingham method, after determining the number of x terms that can be formed, further
procedure is as follows: Of the total of ‘n” number of variables, select a ‘core group’ of ‘m’ number of variables,
which repeat for each x term; these are known as ‘repeated variables’; then, each x term is formed by the core
group plus one of the remaining (x2 — m) variables. Fach of the variables in the core group is raised to a suitable
power to maintain dimensional homogeneity. Selection of the core group should be done as per the following
thumb rules:
{a) variables in the core group must contain among themselves all the fundamental dimensions involved in
the phenomenon.
(b) the repeating variables must not form dimensionless groups among themselves
(c) invariably, dependent variable should not be incuded in the core group
(d) no two variables in the core group should have the same dimensions
(e) in general, repeating variables should be chosen such that one variable contains a geometric property
(e.g. length V', diameter ‘D’ or height ‘i), other variable contains a flow property (e.g. velocity ‘V’, accel-
eration ‘4’ etc.), and the other variable contains a fluid property (e.g. density 'p’, dynamic viscosity ‘o
etc.). In most of the cases, repeated variables or the core group consistof: (L V, p), (d, V. p), (I, V, ), or (d,
V., 1)
Procedure of applying the Buckingham method is illustrated below:
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98.1.3 Dimensional analysis for forcod comvedion. Now let us illustrate the application of Buckigham’s z theorem
to the case of convection heat transfer for a fluid flowing across a heated tube; of course, same approach is
applicable for heat transfer for a fluid flowing inside a tube or flowing over a plate.

First, it is necessary to list the pertinent parameters influencing the physical phenomenon. From the descrip-
tion of the problem, it appears reasonable to assume that the physical quantities listed below (along with their
dimensional formulas) are relevant to this problem:

1. Tube diameter (D)...[L]

Fluid density {0)...[ML

Fluid velocity (V)...[Lt"}]

Fluid viscosity (g)...[ML™'t"!]

Specific heat (C,)...[L%2T ]

Thermal conductivity (k)...[MLt *T"!], and
Heat transfer coefficient (k)...[Mt>T"}]

Thus, we see that there are 7 pertinent variables affecting the physical phenomenon and they contain 4
fundamental dimensions L, M, t and T.

Then, from Buckingham’s # theorem, we deduce that (7 - 4) = 3 independent dimensionless groups would
be formed to correlate experimental data.

Now, let us form the ‘core group’ of 4 variables, keeping in mind the principles enumerated above. Let us
choose 4, V, p, and k for the core group. They contain among themselves all the primary dimensions; they do not
form dimensijonless groups among themselves; no two variables have same dimensions; and, one variable(D) is
a geometric property, one variable(V) is a flow property, and pis a fluid property. Then, the different 7 terms are
obtained by combining the core group with each one of the remaining (7 — 4) properties:

m o= DV
m=h".p . DPVIC,
m=hp DYV k

Exponents of terms in m-terms are chosen so as to make the z terms dimensionless. So, we start with m and
write the dimensional formulas of each quantity and apply the requirement of dimensional homogeneity:
For z;:

None wN

m o= DV
MULPOT? = 1 = MO TR, IMLPLF. (14711, ML)
Equating the exponents of M, L, t and T on either side, for dimensional homogeneity:

Exponents of M: O=a+b+1
Exponents of L: 0=-3b+c+d-1
Exponents of t: 0=-3a-d-1
Exponents of T: O=-a

Solving the above equations, we get:
a=0b=-1c=-1;d=-1

Therefore,
m=ptDViy
ie. m o= w4/ {(pV.D)
Since m is dimensionless anyway,
we shall choose: m=pV.D/u
Recognize that 7, is the dimensionless Reynolds number (Re).
For =,
% =hp.DPVIC,
Then, MPLYOT® = 1 = [MET™, ML L. L. [L32T Y
Equating the exponents of M, L, t and T on either side, for dimensional homogeneity:
Exponents of M: O=m+n
Exponents of Lt O0=-3n+p+qg+2
Exponents of t: 0=-3m-g-2
Exponents of T: 0=-m-1
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Solving the above equations, we get:
m=-Ln=Lp=0,9=1
Therefore,
m=h"pVC,
ie. : my = (Cp.p.V)/h
Since the dimensions of # and k/D are same, we write:
my = (Cp-pV.DY/K
Dividing this by another dimensionless number, i.e. Reynolds number gives again another dimensionless
number; so, we get:
T = !(Cp.p.V.D)/k}/lp.V.D/p} = pC,/k
Recognise that 7, is the dimensionless Prandtl number (Pr).

For my:
&y = WY p DY VER
Then, MOLOOT? = 1 = [MET P, ML LY. [t [MLt*1]
Equating the exponents of M, L, t and T on either side, for dimensional homogeneity:
Exponents of M: O=w+x+1
Exponents of L: 0=-3x+y+z+1
Exponents of t: 0=-3w-z-3
Exponents of T: 0=-w-1

Solving the above equations, we get:
w=-Lx=0y=-1z=0
Therefore,
x =Dk = k/(hD)
Since k/(h.D) is dimensionless, (h.D}/k is also dimensionless. So, we choose:
7y = (L.D)/k
Recognize that 7; is the dimensionless Nusselt number (Nu).
Then, according to the Buckingham 7 theorem,
' 7y = F(my, m)
Or,
Nu = C. Re™ Pr™. ..{9.26)
where C, m and n are constants evaluated experimentally.
Eq. 9.26 is the desired relation among the various physical quantities affecting forced convection across a
tube, expressed in terms of dimensionless numbers Nu, Re and Pr.
Note:
(a) If we had taken (D, o, &% k) for the core group (or, repeating variables), then combining the core group with V,
¢, and h in twrn, we would have got, respectively:
7 =(pVD)/pu="Re
my = ﬂCP/k = Pr, and
#y=hD/k=Nu
i.e. the same result as obtained earlier.
(b} If, instead, we choose (V, 1 p, C,) as the core group, then the dimensionless terms obtained are:
Re=(pVD)/u
Pr = pC,/k, and
St=h/(pVC)=h/(GC)= Stanton number,
where G = p.V = mass velocity
In fact, another way of expressing heat transfer correlations is:
St = F{Re, Pr). .-.(9.27)
9814 Advantages and miteticns of dimensionsl analysis
Advantages:
(i) Tt is mathematically quite simple.
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(i) When a given physical phenomenon depends on a large number of variables, dimensional analysis re-
duces the number of variables for experimentation by getting the dimensionless numbers with suitable
combination of those variables. Advantage of having lesser number of variables for experimentation is
obvious.

(iii) Dimensional analysis helps in interpretation of experimental data.and in deriving suitable empirical,
design equations.

(iv) It also helps in planning the experimental work for a particular problem.

(v) It helps to extend the range of experimental results; for example, if a particular set of results for air in
forced convection is expressed in terms of Nusselts number, Reynolds number and Prandtl numbers,
then the same results can be applied to another fluid, say, water, if the corresponding dimensionless
numbers are the same,

(vi) It helps in getting a partial solution to problems, when the mathematical solution is too complicated.

Limitations:
(i) It does not give any insight into the physical phenomenon occurring.
(i) Selection of variables has to be done with care; if it is wrongly done, results will be erroneous.
(it} It does not give an exact functional relation which can be solved; dimensional analysis requires experi-
mental data to get the coefficients in the functional relationship.
{iv) If it is required to get the effect of one particular variable on the rest of the variables in a particular
problem, it is difficult to get this information by dimensional analysis,

Application of dimensional analysis to the case of heat transfer by natural convection will be described in
the next chapter.

9.8.15 Dimensionless numbers and their physicol signéificance. There are many dimensionless numbers that we
come across in heat transfer studies. Their physical significance must be clearly understood and this is is facili-
tated by expressing these dimensionless numbers as the ratios of two forces. This requires a little explanation:

Many times, in fluid mechanics and heat transfer studies, it becomes impossible or impracticable to conduct
experiments on the actual prototype size of the system. Then, studies are done on a model of reduced size. Then,
the question arises as to how to relate the results of the experiments done on the model to the actual prototype.
To be able to do so, certain criteria have to be satisfied. These criteria, known as ‘criteria for similitude’ are the
following:

{a) Geometrical similarity Two objects are geometrically similar if the ratios of corresponding linear dimen-
sions are equal.

(b) Kinematic similarity This represents similarity of motion , i.e. if the ratios of velocities of corresponding
particles are equal, there is said to be kinematic similarity.

{c) Dynamic similarity This represents similarity of forces. If there is kinematic similarity and in addition,
the ratios of homologous forces in the systems are also the same, there is said to be dynamic similarity.

If all the above criteria are satisfied, then there is complete correspondence or similarity between the model
and the prototype.

Further, in an incompressible flow, if the conditions of geometrical similarity and dynamic similarity are
satisfied, then kinematic similarity is automatically achieved.

Geometric similarity can be easily achieved by constructing the model of the actual system to a certain
reduced scale. One way of ensuring dynamic similarity is by making sure that some relevant dimensionless
numbers are the same for both the model and the prototype, since these dimensionless numbers can be expressed
as ratios of certain forces. Let us illustrate this by considering different forces that are relevant to fluid mechanics
and heat transfer:

(1) Inertia force {F,):
F; = mass x acceleration , i.e.
4V pdv

F,=plL = [ = etV ...(a)
v

(2) Viscous force (E,):
F, = shear stress x area, i.e.
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F,=tl=u 4V 2o pviL ..{b)
dy
(3) Gravity force (F):
F, = mass X gravitational acceleration, i.e.
F = p-La-g ...(c)
(@) Surface tension (Fj):
F,=0-L ...(d)
where o is the coefficient of surface tension (units: Force/unit length)
(5) Elasticity force (F,):
F, = E,L* @)
where E, is the bulk modulus of elasticity of the fluid.
(6) Pressure force (Fp):
F, = pressure x area, ie.
. F,= ApL? ()
Now, let us form the ratios of inertia force with other forces:
Ratios of forces:

ia f vz pV.
M = _F)__—- = E_K.E = Re}rnolds Number = Re

@ Viscous farce HV-L H
. 202 2 :
Inertia force _ gV Vv Vv 5
(b) = = =T (Fr)
Gravity force  p-g-L gL JgL

Here, Fr is known as Froude number’.

. 2 42 2
V. RIZR
(c} __._Iiei“_a.f—‘_’fe——— Iy vk _P v = Weber Number = Wn
Surface Tension force o-L g

@ Inertia force  p VA2 _ V7 v? (May

- — = —_—= — = a

Elasticity force E,-1? By Vg

Io)

where V= E o Sonic velocity and,
J P
Ma = Mach number

. Vi 2
{e) M = o I; = _p_V_ = Fuler Number = E#t
Pressure force AP L AP

Dimensionless numbers mentioned above occur frequently in fluid mechanics.
Some of the dimensionless numbers occurring in heat transfer are:
Reynolds number:

We have:
. 2 . 2
Re < p VL _P v<.L
i uV-L
ie. Re = Inertia force/Viscous force

i.e. Reynolds number is a measure of relative magnitudes of inertia! and viscous forces occurring in a given flow
situation. At low velocities, Reynolds number i low, i.e. viscous effects are large and any flow disturbances are
easily damped by viscous effects and the different layers in the flow move systematically, parallel to each other;
this is called laminar flow. If, on the other hand, the Reynolds number is large, effect of inertial forces are pre-
dominant and the flow pattern is completely random, with the chunks of particles moving in all directions; this
is called turbulent flow. Thus, Reynolds number denotes the type of flow i.e. if the flow is laminar or turbulent.
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Prandtl number:
We have:

HCp  pvC, v

ko (e Y
p‘cp

ie. Prandtl number is the ratio of kinematic viscosity of the fluid to its thermal diffusivity. v represents the
diffusion of momentum through the fluid whereas @ represents the diffusion of heat (energy) through the fluid.
Therefore Pr is a measure of relative effectiveness of momentum and energy transport in the medium by diffu-
sion. For oils Pr >> 1, and this signifies that in oils, momentum transport is more rapid than the transport of
energy; for gases, Pr ~ 1 and this means that in gases, momentum and energy are transported by diffusion at
almost the same rate. For the case of liquid metals, where Pr << 1, the energy transport is many times more rapid
as compared to the transport of momentum.

Prandt] number is also the significant parameter which influences the relative growth of velocity and tem-
perature profiles. Hydrodynamic and thermal boundary layer thicknesses are related by:

kinematic viscosity

Pr= -
thermal diffusivity

i
o

J
— = Pr"
S,
where ‘n’ is a positive exponent.
For gases (Pr ~ 1), §~ 4, for oils (Pr >> 1), §>> &, and for liquid metals (Pr <<1), d << §,.
Nusselt number:
We have: "
h-L
k
Consider a plate at a temperature T, over which a fluid at a temperature T, is flowing; then, immediately
adjacent to the surface there will be a stationary layer of fluid. In this layer, heat transfer is, obvicusly by conduc-
tion and then the heat is transferred to the stream by convection. Making an energy balance and equating these
two quantities,

Nu =

Q= —k-A-(ﬂ] =h-A(T,~T,)
dy =0
(3
Y e
ie, h=— " ¥=0
Ts - Ta

{5)
hI_ dy y:D

k T -T)
L
i.e. Nusselt number may be interpreted as a ratio of temperature gradient at the surface to an overall, reference
temperature gradient.

Looking at it in another way, multiplying both the numerator and denominator of the expression for Nu by
AT, we can write:

1]

hL h-_Al _ convective heat flux

k¢ AT conductive heat flux
L
i.e. Nusselts number is an indication of the enhancement of heat transfer by convection.

Nu =
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Stanton number:

We have:
gt = h _ R
GC, pVG
This can be written as:
h-L
St = h = h = T = Nu
GC, pVG (p.V.L}[ﬂ-CP] Re-Pr
M k

Stanton number is expressed in terms of other three dimensionless numbers, namely Nusselts number,
Reynolds number and Prandtl number. Note that Stanton number comes into picture only in connection with the
forced convection heat transfer, since the term for velocity (V) is contained in the expression for Nu.

In another interpretation, if the temperature difference between the wall surface and the bulk of the fluid is
AT,

convective heat flux = h.AT; and
energy transported by the bulk fluid flow per unit cross-section of flow area =
mass flow rate x C, x AT = (V.p).Cp.AT
Therefore, taking their ratio:
h-AT __h
(V-p)Cp-AT VpG

Tn other words, Nusselt number may also be interpreted as the ratio of convective heat flux to the rate of

energy transport by the bulk flow of the fluid per unit area of flow cross-section.

Peclet number:
We have:

= Nu

_ pV-LC, _pVL Cp-y
k #

i.e. Peclet number may be expressed as the product of Reynolds number and Prandt] numbers. Again, as we have

shown above, enetgy transported by the bulk fluid flow per unit cross-section of flow area =

= Re-Pr

Pe

mass flow rate x Cp x AT = (V. 0).Cp.AT, and
heat flux due to conduction across a distance L for the same AT = kAT/L. Taking their ratio:

(V-p)-CpAT _ pVLC,

k-AT k
L
i.e. Peclet number may be interpreted as the ratio of rate of heat transfer by bulk flow to the rate of heat transfer
by conduction.
Graetz number:
This dimensionless number is related to the heat transfer to a fluid flowing through a circular pipe. By definition,
it is the ratio of heat capacity of the fluid flowing per unit length of the pipe to the thermal conductivity of the

pipe ie.

Pe

m-Cy )
. ( L ] T PV oz pVD G D

k k-L 4 u kL
where D is the diameter and L is the length of pipe. Therefore, Graetz number is similar to Peclet number, but is
used in connection with heat transfer analysis of laminar flow in pipes.

£-Re-Pr-2
4 L
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Grashoff number:
Grashoff number occurs only in connection with heat transfer in natural convection {we shall study this later).
‘We have, by definition:
‘ 13.p% B¢ AT
Gr = —
M
This can be written as:

Cr e L3~p2~ﬂ~g-AT p.VZ.LZ]
2

= (0L B o AT)- L = (013 B.o.AT)-
(o-L7-f g AT) (p-L°-fg )[(ﬂ_V_L)z

H
In other words,

ia f
G, = Buoyant force- Inertia force

{Viscous force)2
Role of Grashoff number in natural (free) convection is similar to that of Reynolds number in forced convec-
tion.

9.8.2 Exact Solutions of Boundary Layer Equations
Here, we shall illustrate the method in connection with the heat transfer for flow on a flat plate. However, we
shall enly give an outline of the method, since, as we stated earlier, our focus is to enumerate the empirical
relations useful for practical calculations.

Recollect that the equations of continuity, momentum and energy for the boundary layer on a flat plate are
given, respectively, by:

(du/dx) + (dv/dy) =0 .(915)
w.(du/dx) + v.(9u/dy) = v.(0%u /o) (917
u.(9T/3x) + v.(8T/dy) = a(d*T/ oy ...(9.18)

Now, solving the momentum equation in conjunction with the continuity equation gives the velocity distri-
bution, boundary layer thickness and shear stress (or friction force) at the surface. Exact mathematical solution is
rather complex; its outline is given below:

Since the velocity profiles at different distances from the leading edge of the plate are similar, they can be
considered to differ from each other only by a ‘stretching factor’ in the y-direction. So, the dimensionless velocity
u/U can be expressed at any location x as a function of dimensionless distance y/ & from the wall.

Define:
3] .
1 =y- |— = stretching factor
VX

Also, a stream function w{x, y) is defined such that it satisfies the continuity equation, and letting
w= ,/v-x-u-f(n) where u = dy/dy; v=0Jdw/dx

Substituting for the terms in the momentum equation in terms of # gives an ordinary, nonlinear, third order
differential equation:

2 3
fi ELB BB g
d dip

Solution of this differential equation was obtained numerically, by Blasius. The result is shown in Fig. 9.9,

In Fig, 9.9, abscissa is a dimensionless distance (y/ x).Re,”* and the ordinate is a dimensionless velocity (u/
U), where u is the local velocity in the x-direction and U is the free stream velocity.

Two important observations are to be made from Fig. 9.9:
(a) first, when the x-coordinate reaches a value of 5, the y-coordinate is 0.99 i.e. the local velocity reaches 99% of
the stream velocity value when (y/x).Re,’® reaches a value of 5. However, from the definition of the boundary
layer thickness § we know that ¥ = §when #/U = 99%, Therefore, we can write:
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y At (ult) = 0.99, (yIx).Re, "= 5.0

1.0 S\lope =0.332

05

——— T (vix).Re, *
0 1.0 2030 405060

FIGURE 9.8 Velocity rafio in laminar boundary layer, as per Blasius

5-x

JRex

, loca! value of Reynolds number.

&=

...{9.28)

where Re, = pux

{b) second observation is that the slope at y = 0 is 0.332, i.e.

(i)

)

=332

y=0
We get:
(a’_u} = 0.332-2',}Rex ...(9.29)
dy ) X
y=0
Then, the wall shear stress, 7 is given by:
T= ﬂ(ﬂt‘] = 0.332-y‘y—-,(Rex ...{9.30)
d x
J =0
And, the friction coefficient (or drag coefficient), is by definition:
T _ 0.664

[
f: [P_UZ] 'RE‘I
2

..(9.31)

This is the local value of friction coefficient.
Average value of friction coefficient {Cj;) over a plate Jength of L is obtained by integrating Eq. 9.31 between
x=0and x =L ie ’

1 ¢t 1.328

C,=—1C dx = ...(9.32
f L Jo fx "ReL ( )
i.e. Cfa = 2Cﬂ. (933)

Thus, for laminar flow over a flat plate, average friction coefficient is twice the value of local friction coeffi-
cient at x = L.
Solution of the energy Eq. 9.18 gives the value of convective heat transfer coefficient.
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Observe the similarity between the equation of momentum 9.17 and equation of energy 9.18. This fact led
Pohlhausen to follow Blasius assumption of a similarity parameter and stream function as foliows:

7= y- L = similarity parameter
d v-x

p= Jvxtd-f(n)

and, the following ordinary differentiai equation is obtained:
e pr . de T-T,
DL i
dt 27 dg T, -
= T —

I
T,
Ta - Ts
Observe that now the ratio, (v/ @), i.e. Prandtl number, enters the solution. If we draw a graph of excess
temperature ratio (T ~ T,)/(T, - T,) against (y/x).Re,>” we get different curves for different Prandil numbers;
however if the excess temperature ratio is plotted against (y/x).Re,>*Pr"*, we get a single curve for all Prandtl
numbers and the plot is similar to that in Fig. 9.9. This plot is shown in Fig. 9.10.

where e

0= (T-TKT, - T} A
(7~ TiTa = Ts) At6=0.99, (yx).Re," "PF* =50

1.0 Sigpe = 0.332

0.5

0.5 o 0.333

& (yix).Re,” *PF

T T T T T T
0 102030405060
FIGURE 9.10 ODimensionless temperature ratic in laminar boundary layer, for flow over o flat plate

Again, there are two important observations to be made from Fig. 9.10:
(a) first, when the X-coordinate reaches a value of 5, the Y-coordinate is 0.99 ie. the local excess temperature
reaches 99% of the value of total temperature difference between the free stream temperature and the plate sur-
face temperature, when (y/x).Re,”>. Pr®*® reaches a value of 5. However, from the definition of the thermal
boundary layer thickness &, we know that y = § when (T - T}/ (T, — T,} = 99%. Therefore, we can write:

5x
Re, .py033

Therefore, immediately, using Eq. 9.28, we can wrile for the relationship between the thicknesses of hydro-
dynamic and thermal boundary layers:

..{9.34)

) =

§° o
— = P ...[9.35
5, r (9.35)

(b) second observation is that the slope at y = 0 is 0.332, i.e.

T-T,
di =18
(Tn - TSJ
d(i Re, 'Pr"-mj
x
iy =0

=10.332
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Therefore,

ar Ty -
— =0.332- Ltﬂ-JRq pr%3% ...{9.36)
dy y=0 X
Then, local heat transfer flux (considering the stationary layer):
ar T, -
g=—k|— - _roaa L= fReT pro ..(9.37)
dy =0 x

Then, we have for convective heat transfer coefficient:

_k_[ﬂ)
o \dy y=0
Ts _Tﬂ

and, we can write, using Eq. 9.37:

hx | Nu, = 0332 JRe, -Pr*%® ..(9.38)

And the local heat transfer coefficient is:

x

5 @

b= qT - 0332. % Re, - Pr0-3% ..{9.39)

Average value of heat transfer coefficient is obtained by integrating Eq. 9.39 between x = 0and x = L. We get:
h,=2-h._¢ ...{9.40)
i.e. average value of heat transfer coefficient is twice the local value at x = L.
And, then, average Nusselt number is given by:

Nu, = 0664 JJRe, -Pr3% ...(9.41)
Eq. 9.41 is valid for Pr 2 0.6.

In the above equations, properties of the fluid are evaluated at the mean temperature between the free
stream temperature and the plate surface temperature ie. at the ‘film temperature’ given by:

T, + T,

Ty= -3 ...(9.42)
Eq. 9.41 is not valid for liquid metals (Pr << 1); for liquid metals, following correlation is suggested by Kays:
Nu, = 0.565-Pe,”” ...(Pr <.005)...(9.43)
where Pe, = Re, Pr = Peclet number

Example 9.2. Dry air at atmospheric pressure and 20°C is flowing with a velocity of 3 m/s along the length of a long, flat
plate, 0.3 m wide, maintained at 100°C.

(a) Calculate the following quantities at x = 03 m:

(i) boundary layer thickness (ii) local friction coefficient {iii) average friction coefficient (iv) local shear stress due to
friction (v) thickness of thermal boundary layer (vi) local convection heat transfer coefficient (vii) average heat transfer
coefficient (viii) rate of heat transfer from the plate between x = 0 and x = x, by convection, and (i) total drag force on
the plate between x = 0 and x = 0.3 m.

(b) Also, find out the value of x,.(i.e. the distance along the length at which the flow turns turbulent, Re, = 5% 10%).
Solution.

Data:
100420

W:=03m = 100°C T, = 20°C tU=3m/s Tf:= 60°C

Properties of air are to be taken at the film temperature of 60°C. We get, from the data tables:
o= 1025 kg/m®  C,o= 1017 J/(kgK) - 44 3= 19.907-10° kg/(ms) k := 0.0279 W/(mK) Pr = 0.71
(a) Atx =03 m:
x:=03m
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Re = pUx (local Reynolds number at x = 0.3 m)
M
ie. Re, := 4.634 x 10*
Note that Re, is less than 5 x 10°. Therefore boundary layer is laminar and the equations derived above are applica-
ble.

(i} Boundary layer thickness, &

5-x

We have: d:= ...(9.28)
JREI
ie. 8 =6968x 107 m (thickness of boundary layer)
(ii} Local friction coefficient C e
We have: Cppi= 0.664 .(9.31)
"/Rc’x
ie Cp = 3.085 x 107 {Local friction coefficient.)}
(iii} Average friction coefficient C,:
We have: Cp= 1.328
JRe,
ie. Cp = 6.16504 x 107° (Average friction coefficient.)
Or: from Eq. 9.33
Cui=2C, e C,= 616904 x 107
(iv) Local shearing stress, ©:
We have
= 033244 Re, . 9.30)
X
ie. r= 0.014 N/m? (Local shearing stress.)
(v} Thickness of thermal boundary layer:
We have:
S _ ppoim ...(9.35)
‘51
: )
le. (5‘, = W
ie 8,=781x10"m (thickness of thermal boundary layer.)
{vi) Local convection heat transfer coefficient:
We have
b= 0.332-£-,/Re, -prt® ...(9.39)
x
ie. h, = 5.93 WHmZo) (focal heat transfer coefficient.)

(vii) Average heat transfer coefficient:
From Eq. 9.40, average heat transfer coefficient between x = 0 and ¥ = r is equal to twice the value of local heat
transfer coefficient at x = x '

ie. h,=2h,
i.e. h, = 11.86 W/(m*C) {average heat transfer coefficient.)
{viii) Rate of heat transfer from the plate between x = 0 and x = x, by convection:
Area = Wx 0.3 m* {area of heat transfer)

ie. Area = 0.09 m?

Q:=h,-Area-(T,-T)
ie. Q=18539 W (heat transfer rate from the plate between x = 0 and x = 0.3 m.)
(ix) Total drag force on the plate between x = 0 and x = 0.3 m

Fp:= rArea, N (drag foree)
ie Fr=128x 107 N.
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(b) Distance at which flow turns turbulent:

U-x, "
We have: Re. = B—-;li =5x10° (critical Reynolds number)
. s -
Therefore, X.= >107 4
pU
ie %, =3237 m (distance at which flow becomes turbulent.)

Exomple 9.3. Dry air at atmospheric pressure and 20°C is flowing with a velocity of 3 m/s along the length of a flat
plate, {size: 0.5 m x 0.25 m), maintained at 100°C. Using Blasius exact solution, calculate the heat transfer rate from: (i}
the first half of the plate (ii) full plate, and (iii} next half of plate.

Solution.

Data:

100 +20

L=05m W:=025m T, := 100°C T, = 20°C U:=3m/s Tp = = 60°C

Properties of air are to be taken at the film temperature of 60°C. We get, from data tables:

p=1025kg/m*  C,:=1017 [/(kgk)  p:=19.907 x 10 kg/(m-s) k= 00279 W/(mK)  Pr:=071
(i) Heat transfer rate from the first half of plate*

Now, characteristic dimension to calculate Reynolds number is half the length of plate:

x:=025m
: p-Ux
Therefore, Re,:= {local Reynolds no. at x = 0.5/2 = 0.25 m)
H
ie. Re, = 3.862 x 10°
This value is less than 5 x 10% so, the boundary layer is laminar and the equations derived above are applicable:
We have:
b, = 0.332. ¥ Jre, o : ..(9.39)
X
Le, - h, = 6496 W/ (m2C) {local heat transfer coefficient)
Therefore average heat transfer coefficient between x =0 and x = 025 mu
h,:=2h,
ie. h, = 12992 W/ (m*C) (average heat transfer coefficient)
Area = 0.25-0.25 m? (area of half of plate)
ie. Area = 0.0625 m’ {area of half of plate)

Therefore, heat transferred from first half of plate:
Q= b Area (T, -T) W

ie. Q) = 64962 W
{ii) Heat transfer rate from the entire plate:
For the full plate x=L=05m
L:=05m
Therefore, Re; = pUL {local Reynolds no. at L = 0.5 m)
7 ;
ie. Re; = 7.723 x 10%
This value is ess than 5 x 10% so, the boundaty layer is laminar and the equations derived above are applicable:
We have:
hy = 0.332- % Re, -Pr®™ ...{9.39)
i.e. By = 4.594 W/ (m’C) (local heat transfer coefficient)
Therefore average heat transfer coefficient between x = 0 and x = 0.5 mu:
hy=2-h
ie. i, = 9.187 W/(r’C) (average heat fransfer coefficient)
Area := 0.5-0.25 m? (area of full of plate)
ie. Area = 0.125 m’ (area of half of plate)
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Therefore, heat transferred from entire plate:
Q= Area- (T, -T) W
ie. Q;=91.87 W
{iii} Heat transfer rate from nexi half of plate:
This is equal to heat transferred from the entire plate minus the heat transterred from the first half of plate = 0, -,
X3 Q,-Q = 269508 W Vet Fransferred from next half of plate)

9.8.3 Approximate Solutions of Boundary Layer Equations-Von Karman Integral
Equations

It may be observed that Blasius solution ta the momentum equation, though exact, is quite cumbersome even for

the simple case of a flat plate; further, much ingenuity is required in selecting a suitable similarity parameter 5

tor the solution. In the approximate method of Von

, Karman, instead of developing the differential equa-
tions starting from an infinitesimal control volume, a
finite control volume is selected and integral equations

X are developed; this may be done either by directly inte-
Finite controf grating the momentum (or energy) equation or by writ-
i volume of interest ing a momentum (or energy) balance for the finite
B —- _—C control volume. This latter approach is shown below.
7‘ P Velocity profile Consider a finite control volume, A-B-C-D, that
Yy ]L’— 7/ extends from the wall surface in the Y-direction well
7 el i he free stream (i.e. beyond the boundary layer),
u STy mto t Iree : Y the y iayer)
has a thickness of dx in the X-direction and has unit
@ e L A width in the Z-direction, as shown. Let the height of
A %——}f D AB be H (> d). Now, let us write the momentum bal-
dx ance:

FIGURE 9.11 Finite control volume in the boundary

H
. fl i AB = .
layer over a flot plote, for integral approach Mass flow rate entering face J;p wdy

H H
Mass flow rate leaving face CD = Jp-u dy + %[J‘p-udy]-dx
0 X\J0

Since no mass can enter the control volume from face AD, it is clear from the mass balance that the incre-
mental mass, i.e.

dx

must have entered the control volume through face BC, with the free stream velocity U,
The x-momentum fluxes are;
Influx through face AB:

H
E—[ p-udy}dx
0

efflux through face CD =

influx through BC =

d H
U~—(J.p~ua'y)-dx
dx\ Ji

Assuming that there are no pressure forces (i.e. pressure gradient in X-direction is zero) and no body forces,
and also that there is no shear force on the upper face BC since it is outside the boundary layer, we write the
momentum balance:

Drag or shear force at the plate surface = net momentum change for the control volume.
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T,-dx = U—d II,;-Jldl; dx — 4 JH w2y |-dx
v drydn ~dxldo S

s 5
7,-dx _ud Jp-udu dx - 4 I pritdy |-dx
dx\ Jo : dxlJo ‘

Note that upper limit of integration is replaced by & since the integrand is zero for y > § ie. outside the

boundary layer.
d| ¢f
T, = o jop-(u — u)-udy

Simplifying, we get:
dl(o, ulu
ie. = pU— J [l——]-—d (944
' wh dx[o aya 044

Fq. 944 is known as Von Karman integral momentum equation for the boundary layer. It expresses wall
shear stress T, as a function of non-dimensional velocity distribution (1/1l). It is clear from Eq. 9.44 that if we
I'now the velocity distribution in the boundary layer, we can calculate the wall shear stress easily.

Now, method of solution is to assume a velocity distribution in the boundary layer to start with. At first
sight, this looks ridiculous to assume the velocity distribution, but since the boundary layer is very thin, assum-
ing a velocity profile which satisfies the boundary conditions does not introduce much error. This is verified
from practical results and also, as shown in Table 9.4, assumption of different velocity profiles does not give
much variation in calculated values of boundary layer thickness & or the friction coefficient Cp

Since, from the experiments, it is observed that velocity distributions in the boundary layer at different x-
locations are geometrically similar, we can say that the dimensionless velocity distribution (u/U) is a function of
dimensionless distance from the wall (y/ 8). So, let us assume a velocity profile as follows:

e e B

Eq. 9.45 must satisfy the following boundary conditions:

ie.

Aty =0 u=0and
dz.
L
dy
Aty =4 u=Uand
du
dy
Applying these boundary conditions, we get the constants a, b, c and d in Eq. 945 and the velocity profile
becomes:
3
o E.[i} _ l.[l) ..(9.46)
u o 2\8) 21\é

' Let us now introduce this cubic velocity profile into the Von Karman momentum integral Eq. 9.44. Simplify-
ing, we get:
9
= 3_pu2 _IE
280 dx
At the solid surface, Newton's law of viscosity gives:

el @)
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. 3 M U
. T, = —"—- ...(9.48
1 v =5 (9.48)
Equating Eqgs. 9.47 and 9.48, we get:
39 2déd 3 pl
gl 2. £

280 L )

ie. sas=220 44
13 p-U

Since dis a function of x only, we integrate the above equation and applying the condition thatat x =0, =
0, we get:

& 140 px
2 13 p-U
Or, in non-dimensional form, this may be written as:
, .64
é: 1402 4o 4.6 .(0.49)
x 13 x-p-U JE
where Re, is the Reynolds number with characteristic distance x from the leading edge of the plate.
Eq. 9.49 gives the boundary layer thickness 4, at a distance x from the leading edge.
To calculate the shear stress at the wall, let us insert this value of §in the expression 9.48 for 1,
_3ul 3 pU
=578 T2 18
‘/Rex
" .. pU? 0.646
' T2 JRey
Now, from the definition of local skin friction coefficient, we have:
T 0.646
Cp = w = ...(9.50)
fx
%'puz VR
Average skin friction coefficient is given by:
= - Cp dx = ‘[
J fx I P XY J‘
ie. Cp=1292 |2 - 1292 ...(951)

Lol JRe
where Re; is the Reynolds number based on length L of the plate.

Note that values of boundary layer thickness and skin friction coefficient obtained above with the approxi-
mate, integral method, match reasonably well with the values obtained by exact analysis of Blasius.

Further, if we assume a velocity profile other than the cubic velocity profile assumed above (satisfying the
boundary conditions), it is observed that the results obtained do not differ greatly. Table 9.4 demonstrates this
fact for some velocity profiles, including linear, parabolic and cubic. Blasius exact results are shown for compari-
S01:

Note that above results are valid for laminar boundary layer conditions only.

Mass flow through the boundary:
If we consider a section at any distance x from the leading edge, mass flow through that section is given by:
m, = | [Area x Velocity x density]; integration is performed within the limits 0 to 4.
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Table 9.4 Boundary layer thickness {§) and skin friction coefficient {Cy,) for different velocity profiles

velosty pofl. ounday condiars. e P
o T Ay~0 | - Aty=s. -
u_y
1.2 _¥ - -
T u=0 u=U 3.46 1.156
2 3—2-1—[£}2 u=0 = U 5.47 1
ol = u= . 462
du _
dy
3 3—911—1-[1}3 u=0 u=U 464 1.292
"y 28 28 - B ' :
2
au 2 =0 X o
dy dy
u =y
4 Y _sn{Z.L =0 = , .
;= (2 5) u u=U 4.78 1.310
5. Blasius exact solution 5.0 1.328
i.e.

&
m, = Jp-udy
0

Assuming the cubic velocity profile as done earlier, substituting for 1, we get:
¢ 3(y) 1(yY
L= dgtdiLi- 2L d
" Jﬂp{ [2 [5) 2[(5] 4

5 2 1 o'
mx=P-U~[4x?—§x?U

i.e
5
m, = g‘p-u-é' .. (9.52)

Mass entrained between two sections at x; and ¥ can be calculated using Eq. 9.52 as:

Sn = %p-u‘(éﬁ - &) ...(9.53)

where & and &, are the thicknesses of boundary layer at sections x; and x, respectively.

Integral energy equation:

Von Karman integral technique may be applied to get an approximate solution for the energy equation of the
boundary layer, as shown below:

Consider a finite control volume that encloses both the hydrodynamic and thermal boundary layers,
(laminar and incompressible) as shown in Fig. 9.12. Assume that the fluid properties do not vary with tempera-
ture and are constant; let the heating of the plate commence at a distance x, from the leading edge of the plate.
That means that thermal boundary layer develops only beyond x; from the leading edge.

Le us make an energy balance on the control volume ABCD.
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Velocity boundary layer
Finite control
/' volume of interest / Thermal boundary layer
c

— ”+
x
} | &

&

FIGURE 9.12 finite control velume in the boundary layer over a flat plate, for integral energy equation

Energy enters the control volume by convection at face AB, leaves by convection at face CD; also, energy
enters the control volume by conduction through face AD and by convection through face BC. Let us write the
various terms involved:

H
Fluid mass entering face - AB = Jp-udy
0
H d H
Fluid mass leaving through face - CD = Jp-udy + - J.p-udy “dx
0 x\Je
From continuity consideration, mass increment viz.
" sH
i[-[p udy]-dx
dx\ o
must enter the control volume from top face BC.
Heat fluxes through the four faces are:

Heat influx through AB = (Q, = mass X specific heat X temperature
ie.

H
Qx=jp-udy-Cp-T ...(a)
0

H H
Heat efflux through CD = Qe = j pudy-C, T + di[.[ p-udy-CpT}dx -...{b)
0 xX{Jp

Heat influx through upper face BC: Since face BC is well outside the thermal boundary layer, its temperature
is equal to free stream temperature, T, So, we have:

d H
Qnc = E( UP'“dyJ‘Cp'n ~(C)

Heat conducted into the control volume through lower face AD =

dr
Qup=- k'A'[d—)
Yoo

ar
ie Qun = - *"“'x{d_] ey
¥ y=0

Writing the energy balance:
Heat flow into the control volume = Heat flow out of the control volume
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or,

Qu+Quc+Ran=Cvi i
Substituting from Eqs. a, b, c and d and simplifying, we get:

H -
3{ Jr.- T).udy] - ’f_[,d_lJ
dx | Jo p'(‘p dlj ¥ =10

‘ dii _ far
Le. E[‘L(Tﬂ - T)-udy} = a{—d;]uzo .{9.54)

Eq. 9.54 is the integral energy equation for the boundary layer, with constant thermo-physical properties and
constant free siream temperature.

Note that we have neglected viscous dissipation in the element since it is very small for low velocities.

To solve the integral energy equation we have to assurne the velocity and temperature profiles; let us as-
surae cubic velocity profite and cubic temperature profiles.

Cubic velocity profile, as shown earlier, is:

3
b 3y T{yy
R AL ‘ r(9.55)
i35l
Temperature distribution must satisfy the boundary conditions:
T
Aty =1{; T=T, and =0
dy
ar
Aty =4 T=T, and — =0
dy
These boundary conditions are of the form as required for the velocity profile; therefore, temperature distri-
bution is also of the form:
3
-1, 3
b Lo 3jv) 1w ..(9.56)
8, T,-T, 2\46) 214

where T, is the plate surface temperature, T, is the free stream temperature and & is the thickness of thermal
boundary layer at a given section.

Now, the Eqs. 9.55 and 9.56 are inserted in the integral Eq. 9.54 and simplified. For most gases (Pr = 1) and
oils (Pr > 1), thermal boundary layer is thinner than hydrodynamic boundary laver, i.e. § < & so, upper limit of
integration is changed to & instead of H because the integrand becomes zero bevond v = 4,

Final solution for the thermal boundary laver thickness is:

I
313

S _ 0976 | (x4
5= 1 (r] ..{9.57)

pr3

Remember that Eq. 9.57 is for the case when the heating of the plate starts at a distance of x;, from the leading
edge. Instead, if the heating starts from the leading edge itself, putting x, = 0, we get:

) .
?f -0 9_716_ (9.58)
Pr3

, Observe that this value of &, is close to the value obtained with exact analysis.
Local heat transfer coefficient (h ):
We obtain i1, from the relation:
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=N
=

ﬁk.[ :

h, =

).

Ts B Ta
Getting dT/dy from Eq. 9.56, and taking the values of dand (4,/J) from Egs. 9.49 and 9.57 respectively, we
get:
1 1

k =y —_
h, =0.332-—Rel-Pr3. 1 ] ...{9.59)
X 1
213
{2
x
and, in terms of non-dimensional Nusselt number, we write:
11
h,-x  0.332-Re? -Pr?
Nu, = 22— = x I ..(9.60)
k 2
3a
(%)
x
If the plate is heated over the entire length, x; = 0, and we get:
P S
b, =0332-— Re2-Pr3 «(9.61)
0
and,
hoox 11
Nu, = Xk = (1.332- ReZ -Pr3 (9.62)

Note that Eq. 9.62 is in excellent agreement with the value obtained with exact analysis.
Average value of the heat transfer coefficient is obtained by integrating the local value over the entire plate:

1Ld
h=_.j
., Lohxx

Performing the integration after substituting for h,, we get:

h,=2h ..(9.63)

Similarly, average value of Nusselt number is obtained as:

1

oL o
N, = == = 0.664: Ref - Pr3 (9.64a)
or, Nu, = 2-Nu, .(9.64b)

where Re; = p UL
H

Note that all the above analysis is for laminar boundary layer conditions; property vatues are taken at film
temperature (i.e. mean value of surface and free stream temperatures}, given by:
_T+T,

2 1

Eq. 961 is valid for fluids with Prandtl numbers varying from 0.6 to 50 ie. it is not applicable to liquid
metals for whom Pr << 0.6 and for heavy oils or silicones for whom Pr >> 50.

For a wide range of Prandtl numbers Churchill and Ozoe have given the following correlation, for laminar
flow on an isothermal flat plate:

iy
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11
0.3387-Rez - Pr3
Nu, = ——reorero——— wfor Re, Pr > 100 ...(9.65)

2

. [0.0468 JS
1+ ——

Pr

[ ]

For constant heat flux conditions:

All the above relations were derived for laminar flow over a flat plate, temperature of the plate being maintained

constant. However, there are many practical cases where the heat flux over the surface is constant (e.g. when the
surface is heated by electrical heaters).

For the case of constant heat flux, it is shown that local Nusselt number is given by:

1 1
h-x > 7
Nu, = T = (.453. Rex2 Pr3 .Pr 2 0.6...(9.66)
In terms of surface heat flux and temperature difference, this is writien as:
Hs X
. = (9.67
* k‘(Ts - Ta) ( )

Average temperature difference along the plate for this case is obtained by performing the integration:

1 L
(T - Ta)avg = Ij()(l]s - Ta)dx

Substituting for (T, - T,) from Eq. 9.67 and performing the integration, we get:

L

P

- - __?_S. k
(Ty = Tavg = - (9.68)

0.6795Re -Pr3

3
and, gy = E‘h.'_ (Ts — Todavg (9.69)
‘ In the above equations, g, is the heat flux per unit area with units: W/m”.
Again, for the constant heat flux case, Eq. 9.65 for very wide range of Prandtl numbers, is modified as:

1 1
.Re2.pPr3
Nu, = 04657 Rei P2 .for Re_ Pr > 100 ...(9.70)
274
(0.02052]3‘
1+ - —
Pr

Fluid properties are still evaluated at the film temperature.

In all cases, average Nusselt number is Nu, = 2-Nu, ... {9.70a)
Example 9.4,  Air at 20°C and atmospheric pressure is flowing with a velocity of 3 m/s along the length of a flat plate,
maintained at 60°C. Calculate: (i)hydrodynamic boundary layer thickness at 20 ¢m and 40 cm from the leading edge, by

the approximate method (ii) mass entrainment rate between these two sections assuming a cubic velocity profile, and
(iii} heat transferred from the first 40 cm of the plate.

Solution,
Data:

60 + 20

T, := 60°C T, = 20°C U:=30m/s x:=02m X%:=04mTy= = 40°C

Properties of air are to be taken at the film temperature of 40°C. We get, from data tables:
p = 1.092 kg/m’ Cpi=1014 J/(kgK)  #:=19123 % 107 NS/m? & := 0.0265 W/{mK)  Pr:=1.01
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() Hydrodynamic boundary layer thickness at section-1 (i.e. x = 0.2 m) of plate:
Now, characteristic dimension to calculate Reynolds number is length x,

Therefore, Re,, = pux (local Reynolds no. at x, = 0.2 m}
H
ie. Re, = 3426 x 10*

This value is less than 5 x 10% so, the boundary layer is laminar and the equations derived above are applicable:
Hydrodynamic boundary layer thickness, &:

_ 464,

We have: &4 = ...(9.49)
JRe,
ie. &=5013%10"m (thickness of hydrodynamic boundary layer at x; = 0.2 m.)

Hydrodynamic boundary layer thickness at section-2 (i.e. x = 0.4 m) of plate:

Now, characteristic dimension to calculate Reynolds number is length x,:

-
Therefore, Re,, = % (Yocal Reynolds no. at x; = 0.4 m)
ie. Re,, = 6.852 x 10°

This value is less than 5 x 10%; so, the boundary layer is laminar and the equations derived above are applicable:
Hydrodynamic boundary layer thickness &,:
4.64-x,

We have: 4, = -{9.49)
: JRexZ
ie. &=709%107m (thickness of hydrodynamic boundary layer at x, = 0.2 m.)
(ii) Mass flow entrained between sections 1 and 2:
For a cubic velocity profile, mass flow entrained between section 1 and 2 is already shown to be:
S : = %p-u'(a; - &) (9.53)
ie. om = 4.252 x 107 kg/s {mass entrained between sections 1 and 2.)
(iii) heat transferred from the first 40 cm of the plate:
Now, we have: Re,, = 6.852 x 101
1 1
Nu, = 0.332-Re},-Pr? .-(9.62)
Le. Nu, = 87.197 (Nusselt number)
But, Nu,= fax
k
Nu, -k
Therefore, h, = Ehlec BLE
Xy
ie. b, = 5777 W/(m’C) (local heat transfer coefficient)

To calculate the heat transferred from first 40 cm of the plate, we need the average value of heat transfer coefficient
over this length. It is given by twice the value of local heat transfer coefficient at x = 0.4 m. i.e.

b= 2h, (9.63)
ie h, = 11.554 W/{m*C) (average heat transfer coefficient over 40 cm length)
Area := 041 m? (heat transfer area for unit width)

Therefore, heat transferred over 40 cm length of plate:
Q= h,-Area-(T, - T) W

ie Q=184858 W ..leat transferred over 40 cm length of plate.
Example 9.5. Engine oil at 30°C is flowing with a velocity of 2 m/s along the length of a flat plate, maintained at 90°C.
Calculate, at a distance of 40 cm from the leading edge: (i) hydrodynamic and thermal boundary layer thicknesses by the
exact method (ii} local and average values of friction coefficient (iii) local and average values of heat transfer coefficient,
and (iv) heat transferred from the first 40 cm of the plate for unit width.
Solutien.
Data:

_%0+30

T,:=90°C T,:=30°C U=20m/s x:=04m T, >

60°C
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Properties of engine oil are to be taken at the film temperature of 60°C. We get, from data tables:
p =864 kg/m®  C,:= 2047 ]/(kgK) g = 725x 107 Ns/m®> &k := 0.140 W/(mK)  Pr := 1050
(i) Hydrodynamic and thermal boundary layer thickness at 0.4 m from leading edge of plate:
Now, characteristic dimension to calculate Reynolds number is: x = 0.4 m

U-x
Therefore, Re, = pT- (local Reynolds no. at x = 0.4 m)
ie: Re, = 9.534 x 10°

This value is less than 5 x 10°; so, the boundary layer is laminar and the equations derived earlier are applicable:
Hydrodynamic boundary layer thickness &

5-x

We have: &= .(9.28)
d RBX
ie. §=002m (thickness of hydrodynamic boundary layer.)
Thickness of thermal boundary layer: '
We have:
g
— =P (9.35
3, r (9.35)
. g
ie. %= o
ie. 8,=202x107m (thickness of thermal boundary layer.)

Note that thermal boundary layer thickness is very small compared to that of hydrodynamic boundary layer, since
Pr>>1.

(i) Local and average values of friction coefficient:

We have:
Cpi= 0.664 -(9.31)
JRe,
ie. Cp=68x107 (value of local friction coefficient.)
And,

Cpi= 2:Cf, .(9.33)
ie. C, = 0014 (value of average friction coefficient)
(iii) Local and average values of heat transfer coefficient:

Since Prandtl number is very high and Re,-Pr = 1.001 x 107 > 100,
we shall use Eq. (9.65}), i.e.
1
. 2. 3
Nu_:= m—f’—] (for Re, Pr > 100...(9.65))
2 1%
(0.0468]3
1+ -
Pr
ie. Nu, = 336.027 (Nusselt number)
And, h,:= Ny k (tocal value of heat transfer coefficient)
¥
i.e. : h, = 117.61 WHm*C) (value of local heat transfer coefficient.)
Therefore, average value of heat transfer coefficient
h,=2-h,
ie. h, = 235.219 Wim*C) (value of average heat transfer coefficient.)
{(iv) Heat transferred from the first 40 cm of the plate for unit width.
Area = 04 m’ (area of heat transfer for unit width)
Therefore, Q:=hk, Area-(T, - T))
ie. Q=5645x 10° W (heat transfer rate from the plate between x = 0 and x = 04 'm
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Example 9.6. An air stream at 20°C and atmospheric pressure, flows with a velocity of 5 m/s over an electriacally heated
flat plate (size: 0.5 m x 0.5 m), heater power being 1 kW. Calculate:
(i) the average temperature difference along the plate (ii) heat transfer coefficient, and (iii) temperature of the plate at the

trailing edge
Solytion.
Data:
1000 . . 5
T,:=20°C U:=50m/s L:=05m W:=05m g,:= 1505 © g, =4x10° W/m

Note that properties have to be evaluated at the film temperature; howevet, since the temperature of the plate is not
constant, but varies along the length, we shall start the analysis taking the properties at 20°C and then refine the values
later.

At 20°C and atmospheric pressure, properties of air are:

p=1205kg/m®  C,:=1005)/(kgK)}  v:=1506x10°m*/s  k:= 002593 W/(mK)  Pr:= 0703
(i) the average temperature difference along the plate

First check Reynolds number for laminar flow:
Re, = LI Re; = 1.66 % 10° < 5 x 10°
v

Therefore, flow is laminar.
For constant heat flux conditions, we use Eq. 9.68, to calculate the average temperature difference:

L
s E
(T, - Ta)avg = j 1 ...{9.68)
0.6795-Ref -Pr3
ie. (T; — Talpuy = 313.325 deg. C
Now, find the properties again at a film temperature of: (20 + 313.3)/2 = 161.5°C

We get:
vi=301x10°m?/s k= 00365 W/(mK) Pr:= 0682
Now, using Eq. 9.68 again, we get:

t-L

Re:= == ie Re =B8.306x 10t
and, (T, = T }ayg = 317.882 deg.C
Therefore, film temperature:
317.828+ 20 _ 168.94°C
Now, again, find the properties again at a film temperature of: 169°C
We get:

vi=3125x 107 m3/s k= 00371 W/(mK)  Pr:=0.6815
Now, using Eq. 9.68 again, we get:

Rey = L . Re, = 8 x 10°
v

and, (T = Todavg = 318737 deg. C
Therefore, film temperature:
SBTTH20 _ 69369°C

Therefore, the film, temperature has not changed much. So, we conclude:
(T, ~ Tlavg = 318.737 deg. C (Average value of temperature difference over the plate length.)
(ii) Convection heat transfer coefficient:
We have, for the case of constant heat flux:
1 1

= 0.453- Ref -Pr? ...(9.66)

Nu=h'—x
k

FUNDAMENTALS OF HEAT AND MASS TRANSFER



Now,
u-L

Re, = -~ ie. Re =8x10 (Note: taking v at 169°C)
11
From Eq. 9.66: Nu; = 0.453. Ref - Pr?
ie. ' Nu; = 112.754
Therefore, hy = Nule
ie. hy, = 8.366 W/(m’C) (local heat transfer coefficient at the end of plate, ie. at x = L)
Therefore, average heat transfer coefficient over the whole length of plate:
Bayg =211,
ie. B = 16733 W/(m’C) {average heat trangfer coefficient over the plate.)

(iii) Ternperature of the plate at the trailing edge:
From the basic heat flow equation., we have:

qs-L - Nu, -k
T,-T, = h=
f % Nu -k as L
ie o T,-T, = 478.1
ie. T, = 498.1°C temperature of plate at trailing edge.

Example 9.7. Sodium-Potassium alloy (25% + 75 %), at 300°C , flows with a velocity of 0.4 m/s over a flat plate (size: 03
m x 0.1 m), maintained at 508°C. Calculate (i) the hydrodynamic and thermal boundary layer thicknesses (ii) local and
average value of friction coefficient (iii} heat transfer coefficient, and (iv) total heat transfer rate -
Solution.

Data:

T,:=500°C T,:=300°C U:=04m/s L:=03m W:=0lm T;= -3-00;ﬂ = 400°C
Properties of Na—K alloy are to be taken at the film temperature of 400°C. We get, from data tables:
vi= 0308 x 10° m?/s  k:=2210 W/(mK)  Pr .= 0.0108

(i) Hydrodynamic and thermal boundary layer thickness at 0.3 m from leading edge of plate:

Now, characteristic dimension to calculate Reynolds number is: x = 0.3 m

‘L
Therefore, Re; = yv_ {local Reynolds no. at L = 0.3 m)
ie. Re, = 3.896 x 10°
This value is less than 5 x 10% so, the boundary layer is laminar and the equations derived earlier are applicable:

Hydrodynamic boundary layer thickness, &:

We have: d:= >L ...(9.28)
"'REL
ie. §=2403 % 107 m (thickness of hydrodynamic boundary layer.)
Thickness of thermal boundary layer, &
We have:
]
— = pyi¥® -{9.35
5 - (9-35)
. J
ie. &= oo
ie 6,:= 0011 m {thickness of thermal boundary layer.)

Note that thermal boundary layer thickness is very large compared to that of hydredynamic boundary layer, since
Pr<<1.
(i} Local and average values of friction coefficient:
We have:
0.664

Reg

{9.31)

Cﬂ- =

5
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ie. Cy = 1.064 x 103 (local value of friction coefficient)
And,

Cui=2:Cy -(9.33)
ie Cp = 2128 107! (average value of friction coefficient)
(i) Local and average values of heat transfer coefficient:

Since Prandtl number is very low (liquid metal) and Re;-Pr = 4208 x 10* > 100,
we shall use Eq. 9.65ie.

1
0.3387-Re? -Pr3

Nu, = ———~ (for Re, Pr > 100...(9.65))
2
s (0,0468]5 )
P Pr
ie. Nu; = 33.791 (Nusselt number)
And, hy = NuTLk (local value of heat transfer coefficient)
ie. hy = 2489 x 10° WHm?C) (local value of heat transfer coefficient)
Therefore, average value of heat transfer coefficient
b= 20,
ie. h, = 4.978 x 10° WHmM>C) (average value of heat transfer coefficient)
{iv) Heat transferred from the plate:
Area = 0.03 m? (area of heat transfer)
Therefore, Q= h,Area-(T, - T,)
ie. Q=2987x 10" W (heatl transfer rate from the plate between x = 0 and x = 0.4 m)
Note: Alternatively, for liquid metals, we can also use Eq. 9.43 to get local Nusselt number:
Nu, := 0.565 Pe,”* ((Pr < 005)...(9.43))
where Pe is the Peclet number = Re.Pr
ie. Nu, = 0.565-(Re; - Pr)’S
ie. Nu; = 36.65
Compare this value of Nusselt number with the value of 33.791, obtained from Eq. 9.65.
Then, p = Nk (local value of heat transfer coefficient)
ie. By = 2.7 x 10° WHm™Q) (local value of heat transfer coefficient)
Therefore, average value of heat transfer coefficient
by =2l
ie. h, = 5.4 x 10° Wim®c) (average value of heat transfer coefficient)
And, Q= k- Area (T, -T,)
i.e. Q=324x10'W (heat transfer rate from the plate between x = 0 and x = 04 m.)

Value of () thus obtained is about 8.5% higher than the value obtained by using Eq. 9.65.
9831 Terhwlent bowndery layer flew over u flut plute. Consider a flat plate over which a fluid flows with a free
stream velocity of 1. At the leading edge the fluid comes in contact with the surface and then along the length a
boundary layer develops, as explained earlier. For a certain distance from the leading edge the flow in the
boundary layer is ‘laminar’, i.e. the flow is regular and the layers of fluid are all parallel to each other; however,
after this distance, called ‘critical distance’ (x,), the flow becomes ‘turbulent’, i.e. the flow becomes highly irregu-
lar and there is completely random motion of fluid chunks. The transition from laminar to turbulent is not sud-
den, but there is a transition region in between. The dimensionless number characterizing the type of flow ie.
whether it is laminar or turbulent, is the Reynolds number, Re (= p.LL.L/#). For a flat plate, generally accepted
value of Re at which flow becomes turbulent is 5 x 10°; however, it should be understood that this value is not a
tixed value, but depends on the surface conditions i.e. if the surface is smooth or rough.

The turbulent boundary layer itself is thought of as subdivided into three sections viz. a laminar sub-layer,
a buffer layer and lastly, a turbulent region. See Fig. 9.2.

Now, one could easily imagine that because of the nature of random motion of fluid in turbulent flow, an
exact mathematical analysis of this phenomenon is rather difficult. Models have been proposed by many re-
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search workers to explain the observed phenomenon: Reynolds conducted his famous ‘dye experiment’ in 1883
to visually demonstrate the transition from laminar to turbulent flow. In turbulent flow it is observed that sec-
ondary motions of the fluid are superimposed on the main flow and there are irregular fluctuations of local
velocity. Chunks of fluid, called ‘eddies’ move across the line of motion causing mixing of the fluid, thus causing
the transport of momentum as well as energy. Therefore, in turbulent flow, heat transfer is enhanced; also, there
is increased ‘drag force’ or pressure drop. Prandtl (1925) suggested that the ‘eddies’ moving across the fluid
layers cause the transport of momentum, and the average transverse distance moved by an eddy before it gets
mixed with other particles and loses its identity is called as ‘mixing length’. This mixing length is akin to the
‘mean free path” appearing in the kinetic theory of gases.

Turbulent flow is important in heat transfer applications, since there is increased heat transfer in turbulent
flow; of course, this is achieved with a penalty of increased pressure drop. It is usual to introduce ‘turbulence
promoters’ in applications where increased heat transfer is the primary consideration.

We shall not go into the theories of turbulence, but give here the important results useful for practical appli-
cations.

Velocity distribution:

Boundary layer thickness is more in turbulent flow as compared to that in laminar flow. Also, the velocity distri-
bution is more uniform across the thickness of boundary layer as shown in Fig. 9.2. It is observed experimentally
that the velocity distribution in turbulent flow follows the one-seventh power law:

1

®_(¥)
U (5] .(9.71)

Surface shear stress:
Surface shear stress is given by:

7 1

7, = 0.0225p-L1% .[%]4 {9.72)

Hydrodynamic boundary layer thickness:
This is obtained by solving the integral momentum equation, i.e.

d )
= E[jﬁp-(u - u)-udy}

Substituting for u(y) and 7, from Eqgs. 9.71 and 9.72 respectively, and solving, we get:

5 -1

— =0.371-Re,} -(2.73)
x

Thermal boundary layer thickness: .

In turbulent flow, since the effects of physical movement of eddies predominates over the diffusion effects,

Prandtl number does not have much influence on the thermal boundary layer thickness, &, and is of the same

order as the hydrodynamic boundary layer thickness, d.

Local skin friction coefficient:

Remembering that local skin friction coefficient is defined as:

Tw

1 2
2 PY

Cpy =

and using Eq. 9.72 for g, and Eq. 9.73 for §, we get:
-1
Cp, = 0.0576 Re,5 -(9.74)

Average value of skin friction coefficient:
Average value of Cy, over length L is given by:

1Ld
C=_.jc
fa = T Y
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Substituting for Cp, from Eq. 9.74 and performing the integration, we get:
-1
Cj, = 0.072- Re,° (for 5 x 10° < Re; < 107...(9.75))
Eq. 9.75 is valid for 5 x 10° < Re; < 107 and 0.6 < Pr < 60.
For values of Re; between 107 and 10” following equation is suggested by Prandt! and Schlichting:

0.455

SPIIRY X
(log(Rez))
where log (Re;) is the logarithm to base 10.
Local and average Nusselt numbers:

Local Nusselt number is calculated by applying Colburn analogy (which we shall study in the next section). We
get:

{for 107 < Re; < 10°...9.76))

1

N, = h‘k'x = 0.0288 Rel®.py3 (0.6 < Pr < 60 ...(9.77))
and,
h- 1
Nityy, = 2= = 0036 Re{* Pr3 -{9.78)

For Egs. 9.77 and 9.88, remember: 5 x 10° < Re; < 107 and 0.6 < Pr < 60
Local and average heat transfer coefficients:
These are determined from:
1

h, = 0.0288-[-"-}Re2-8-Pr3 (9.79)
x E
and,
k i '
h, = 0.036: {E)'Reg'B-Pﬂ (9.80)

For an unheated starting length of x;:
In turbulent flow, when heating starts from an initial length of x,, i.e. thermal boundary layer begins at x = x;:

1

0.8 3
.0288- .Ppr3
= 0.0288-Re, ™ Prs ; ..(9.81)

5t
1- [__0_)10
X

Note: both x; and x are measured from the leading edge of the plate.
Some comments on the variation of local heat transfer coefficient and local friction coefficient along the length x
from the leading edgé of the plate, in laminar and turbulent flow are appropriate:

(@) In laminar flow, we have:

Nu

T 0.664

Cp=—" = -{9.31)
fx pu2 ’Rex
2
and
h-x 0,333
— = Nu, = 0332- JRe, -Pr ...(9.38)

i.e. in laminar flow, local friction coefficient varies as x™ /% likewise, from Eq. 9.38, it is clear that local heat
transfer coefficient also varies as x™'/2 Of course, at the leading edge (i.e. at x = (), both these values are infinite
and then decrease along the length of the plate according to x~'/
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(b} In turbulent flow, we have:
-1
Cp, = 0.0576- Re5 .{9.74)
and,
k 1
h, = 0.0288- (—].REQ-S-P#* -{9.79)
x

i.e. in turbulent flow, both the local friction coefficient and the local heat transfer coefficient vary as 102 So, as we
proceed along the length of the plate, initially, starting from the leading edge, the flow is laminar where both the
local friction and heat transfer coefficients vary as x~%; then, the flow tums turbulent when the critical distance
is reached, and both the local friction and heat transfer coefficients reach their highest values at this point and
then they decrease along the distance according to: 1 %2 This is shown graphically in Fig. 9.13. In Fig. 9.13, the
transition region is also shown.
For uniform heat flux conditions:
Local Nusselt number increases by about 4% over the value for constant wall temperature, and is given by:
1
Nu, = 0.0308- Rel®-Pr3 .{9.81a)

Also, in the above equations, it is assumed that flow over the plate is turbulent over the entire plate from the
leading edge itself, or alternatively, region of laminar flow is too small compared to the region of turbulent flow.
9.832 Combined laminar and torbulent flow over a flat plate. As explained earlier, for a flow over a flat plate, the
flow at the leading edge starts as laminar and after a critical distance x, the flow becomes turbulent. If the dis-
tance over which the flow is laminar is not negligible as compared to the distance over which the flow is turbu-
lent {i.e. the plate is long enough to cause the boundary layer to become turbulent, but not long enough to neglect
the length over which the flow is laminar), average friction coefficient and average Nusselt number over the
entire plate are determined by integrating the respective local values over two regions, i.e. the laminar region,
0 < % < x, and, the turbulent region, x, < x <L, as shown below:

1 X; L
Cu= I'[jocfx —E dx] -(982)
and,
1 X, L
h = I hy taminar dx + I hi turb dx +{(9.83)
0 X,

- 0.2 ’
P Gy X ° \QC” ) g
X i
\<\ Transition region

Laminar Turbgient
Fluid flow region region
« NP
U

Leading edge Flat plate Trailing edge

FIGURE 9.13 Variation of local friction and heat transfer coefficients for flow over a flat plate
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If we perform the integration taking the value of critical Reynolds number, Re, as 5 x 10°, we get for the
average friction coefficient and average Nusselt number, the following relations: -

Cp= 20721742 {5 x 10° < Re, < 107)...(9.84a)
= Re
Re?
Another, more general relationship used for critical Reynolds number other than 5 x 10° is:
0.455 A

Cp = 8.28 .(9.84b)

(lcug(Rce';_)Z's84 Rep,
where value of 4 is 1050, 1700, 3300 and 8700 respectively for values of Re, equal to 3 x 10°, 5 x 10°, 1 x 10%, and
3x10° - ,
and, for critical Reynolds number of 5 x 10°, average Nusselt number over the entire plate is

4
=|0.036-Ref —836 |- Pr

U]

h-L

Nita =

(0.6 < Pr < 60), and
(5 % 10° < Rey, < 107)...(9.85a)

and, more generally, for critical Reynolds numbers other than 5 x 10%
1
Nityyg = Pr3-(0.036-Ref® - A) ...(9.85b)

where A = 0.036-Re?® - 0.664-Re®
Example 9.8. A refrigerated truck is moving at a speed of 85 km/h where ambient temperature is 50°C. The body of the
truck is of rectangular shape of size 10 m (L) x 4 m(W) x 3 m(H). Assume the boundary layer is turbulent and the wall
surface temperature is at 10°C. Neglect heat transfer from vertical front and backside of truck and flow of air is parallel
to 10 m long side. Calculate heat loss from the four surfaces.

For turbulent flow over flat surfaces: Nu = 0.036.Re"®_ py0%

Average properties of air at 30°C: p = 1.165 kg/m®, C, = 1.005 KJ/kgK, v= 16.10°° m%/s, Pr = 0.701

(M.U. Dec. 1999).
Soletion,
Data:
T,:=10°C  T,:=50°C L:=10m W:i=4m H:=3m A:=LW+H2m® ie A=140n?
T.+ T,
Ty = ‘; =~ +273  T;=303K (film temperature)
Truck is moving at a speed of 85 km/h, i.e.
) 85000 . .
U:= ie. U=23611m/s (velocity of air over the surfaces)
Properties at T, by data:
vi=16x10%m?/s  p:=1165 kg/m’ ,=1005/kgK  Pr:=0.701
v-p-C
ko= % k = 0.02672 W/mK (thermal conductivity of air)
ta
Check if flow is laminar or turbulent:
Reynolds number:
I.
Rey := —u—
. v
ie Re; = 1476 x 107 ..> 5 x 10°
i.e. flow is turbulent since Reynolds number is more than 5 x 10°
Heat transfer:
For turbulent flow, we have:
|
. 1
Nu = 0.036- Re]® pra (Nusselts number)

ie. Nu = 1.738 x 14
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k-Nu

hi= W/(mK)
ie. h = 46.448 W/(m’K)
Therefore,
Qi=hA(T,-T)W
ie. Q=260x10°W

Also, find out the power required to overcome wind resistance:

We have, average skin friction coefficient given by:

_0.455
(log(ReL))z'sa
ie. Cu=282x10°
1
Therefore, Drag force: Fp:= Cf,- £ AZUk
ie. Fp = 128406 N
Therefore, Power: P=F, U W
ie P=3012x10° W
ie. P =3.032 kW

(heat transfer coefficient)

(heat transfer coefficient)

(total heat transfer rate from all the four surfaces)
(total hat transfer rate from all the four surfaces.)

{for 107 < Re; < 10°...(9.76))
(average skin friction coefficient)

N)
{Drag foree)

(Power required to cvercome air resistance)
(Power required to overcome air resistance.)

Example 9.9, A flat plate, 1 m wide and 1.5 m long is maintained at 9%°C in air with free stream temperature of 10°C,
flowing along 1.5 m side of the plate. Determine the velocity of air required to have a rate of energy dissipation as 3.75

kW. Use correlations:
Nu; = 0.664 Re® Pr173 for Laminar flow, and
Nu, = [0.036 Re"® — 836).Pr'/* for turbulent flow.

Take average properties of air at 50°C: p = 1.0877 kg/m’, C, = 1.007 kj /kgK,

#=2.02910"%kg/ms, Pr = 0.703, k = 0.028 W/mK [P.U.; 1995]
Solution.
Data:
L:=90°C T,=10°C L:=15m W=1lm Q:=37%0W A=LW)2m’® ie A=3m?
V]
Tyi= % +273 T,=323K {film temperature)
Properties at T: by data:
# = 2029 %10  kg/(ms)  p = 1.0877 kg/m® Cp:=1007 J/kgK  Pr:=0703  k:=0.028 W/mK
Nusselt number:
We have, for convection heat transfer:

Q=h AT, -T)W (from Newton’s Law of Cooling)
ie. b= A(TLT) W /(m’C) (average heat transfer coefficient)
ie. h, = 15.625 W/{m’C) {average heat transfer coefficient)

Therefore, Nusselt number:
h-L
Nu, = —
. .
ie. Nu, = 837.054

Now, we do not know if the flow is laminar or turbulent. To determine this, we need the Reynolds number. But, we
do not know the velocity to determine the Reynolds number. So, we shall first assume the flow to be laminar and then
check if the Reynolds number works out to be less than the critical Reynolds number (i.e. 5 x 10°):

For Laminar flow:

1
3

Nu; = 0.664-Re*. Py

ie. Re; =
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ie Re, = 2.01 x 10° :
This value of Reynolds number is greater than the critical Reynolds number of 5 x 10%. Therefore, the assumption
that the flow is laminar is wrong.
Then, for turbulent flow, we use the relation:

Wb

Nuj = (0.036-Re{® ~836)-Pr

Therefore,
1
08
N 836
3
Re, := Pr
0.036
ie. Re, = 7.36 x 10° > 5 x 10° (Therefore, assumption of turbulent flow is correct.}
To find the velocity of air;
oU-L .
We have: Rep = (Reynolds number, by definition)
M
Re, -
ie. U= ;L‘u m/s (velocity of air)
p.
ie. U= 92152 mfs (velocity of air.)

Example 9.10.  Air at 30°C flows over a flat plate, 0.4 m wide and 0.75 m long with a velocity of 20 m/s. Determine the
heat flow rate from the surface of the plate assuming that the flow is paraliel to the 0.75 m side. Plate is maintained at
90°C. Use correlations:

Nu; = 0.664 Re®® Pr1/? for Laminar flow, and

Nu, = [0.036 Re®® — 836].Pr'/* for turbulent flow.

Take average properties of air at 60°C: p = 1.06 kg/ m’, C, = 1.008 K] /kgK,

y = 18.97-10° m?/s, Pr = 0.708, k = 0.0285 W/mK [M.U]
Solution.
Data:
T,=90°C T,=30°C WU:=20m/s L:=075m W:=04m
= % ZT“ +273 T,;=3BK (film temperature)
Properties at Tf by data:

vi=1897 x 10 m?/s  p:=106 kg/m®  C,=1008J/kgKk  Pr:=0708  k:=0.0285 W/mK
First, let us find out the distance from the leading edge at which the flow turns turbulent, assuming the critical
Reynolds number to be 5 x 10°, i.e. Lc at which the critical Reynolds number is reached:

Re, =5 10° ) (critical Reynolds number)
I -
Re, - U
v
ie. L= Ree¥
u
ie. L. =047¢ m .dength from leading edge, at which flow turns turbulent.

i.e. along the length of the plate, for a distance of 0.474 m, the flow is laminar. This distance can not be neglected as
compared to the total length of the plate of 0.75 m. Therefore, combined effect of laminar and turbulent boundary layer
flow has to be considered.

For the case of combined laminar and turbulent boundary layers, we have:

i.-
Re; = £u ie. Rey = 7.907 x 1¢° (Reynolds number at the end of plate)
v
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B -L 4 1
Nty = == = [O.O%-REE - 836J-Pr3 (0.6 < Pr < 60), and (5 x 10° < Re; < 107) ...(9.85a)
k 1

Therefore, Nu,,, = [0.036-REE - 836] pr {average Nusselt number over the entire plate)

i.e. Nug, = 932.666

Nu,, -k 2 .

or, h, = — W/(mK) (average heat transfer coefficient over the entire plate)
ie. h, = 35.441 W/(m’K) (everage heat transfer coefficient over the entire plate)

Therefore, heat transfer rate:
Qi=h, LW (T,-T)W {(heat transfer rate from the entire plate)
ie. Q=63794 W (heat transfer rate from the entire plate)

Alternatively, we can calculate the heat transferred by the lamsnar and turbulent regions separately, and then add
thern up, to get the total heat transfer rate for the whole plate:
For laminar flow region (i.e. upto a distance of 0.474 m along the length):

1 .
Nuy,,, = 0.664- Re}* - Pr? {Nusselts number for Laminar region)
ie. Nuy,, = 418.47
Nulﬂm -k 2. - . N .
Therefore, H, 1y = T W/ (mK) (average heat transfer coefficient over the laminar region)
C
ie. Byam = 25148 W/ {mk) {average heat transfer coefficient over the laminar region)

Therefore, heat transfer rate for the laminar region, Q;:
Q1= by gam (WL (T, - T ) W (heat transfer from laminar region)
i.e. Q, =286233 W (heat transfer from laminar region)
For turbulentr flow region (i.e. from a distance of 0.474 m upto the end of piate):
Local Nusselt number for the turbulent region is given by:

he-x s ot
Nu, = p - = 0.0288- Re, " - Pr? A9.77)

0.8 1

ie. b, = 0.0288-[5]-(31] .Pr3
x v

1 0.5

ie = 0.0288 k- Pr3 (EJ x 02

) v

Therefore, average value of heat transfer coefficient for turbulent region is obtained as
1

0.3 I
By tacb = 00288-k-Pr3 (_”-} ._1,_,jx-o.z ix
) v) (L-L)

L.
ie,
Lorgyoe 1 (10% _ 08y
= 00288k P32 . N )
L, ) 7 (v] TR —
ie.
3 1 TR W-L) o8
= 0.036-k- Pr#. 2= - ¢
how om0 () (452
ie.
1
3 1
Ba vuep = 0.036 k- Pr? -(L_L':).[(ML)"'B - (Re,)*?]
AL - '
- ' L@%ﬂ = 0.036-[(Re,)"® —(Re)**)-Pr3
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haitmb (L - Lr)

Note that is the average Nusselts number for turbulent region

Heat transfer rate for the turbulent region (O,

1
1
= 0.036.k- Pr? T [(Re)*® — (Re, )>*]

-L)
ie. By ey = 53.229 W/(m’K) (average heat transfer coefficient ger the turb. region)
Q= by e W (L= L) (T, -T,) W (heat transfer rate for turbulent region)
i.e Q= 352269 W (heat transfer rate for turbulent region)
Therefour, total heat transfer rate, {):
Q=2 +Q
ie. 2 =638502 W (total heat transfer rate for the plate)

This value matches with the value obtained earlier by direct formula.

To show graphicaily the variation of local eat transfer coefficient over the entire Iength of plate:

We have stated earlier that the local heat transfer coefficient for the laminar region varies as x° and that for the
turbulent region varies as x™%Z Let us illustrate this graphically, using Mathcad.

For laminar region, ie. from x; = 0 to x; = (.474 m along the length of plate, local heat transfer coefficient as a
function of x is written as:

0.5 1
By yanle) = 0.332-1-(ﬂ] Prd
n v -
For turbulent region, i.e. from x, = 0.474 m to x, = 0.75 m along the length of plate, local heat transfer coefficient as
a function of x is written as:

0.8 1
By urplts) = o.oas.i.(ﬂ) pr3
- L\ v

Now, for the first case, let us define a range variable x; varying from x, = 0 to x, = 0.474 m and draw the graph by
choosing the x—y graph from the graph pallete, and filling up the place holder on the x-axis with x; and the place holder
on the y-axis with h_j,(x,); then for the second case, again define a range variable x, varying from x, = 0474 m to x, =
0.75 m and in the place holder on the x-axis, put a comma after x; and type x, and in the place holder on the y-axis put
a comma after fi,(x;} and then type f, pq,(x,). Click anywhere outside the graph region and immediately the graphs

appear. See Fig. Ex. 9.10
x:=0,001, .., 047 (define range variable x| varying from O to 047 m, with an increment of 0.01 )
x;:= 047,048, .., 0.75 {define range variable x, varying from 0.47 to 0.75 m, with an increment of 0.01 m)

hx against x for laminar & turbulent flow

100
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™.

Heat transfer coefficient (W.'mZC)

0 01 02 03 04 05 06 07 08
Dist. from leading edge (m})

—— h, for laminar fiow

------ h, for turbulent flow

FIGURE Example 9.10 Varition of local heat transfer coefficient along the length of o flat plate for laminar
and turbulent boundary layer heat transfer
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Note:

(i} In the above Fig. Example 9.10 first portion of the curve is for laminar boundary layer heat transfer and the
second portion is for turbulent boundary layer heat transfer. In laminar portion, the local heat transfer falls
steeply, as ¥ *°, along the length upto the critical distance; once the critical distance is reached, the boundary
layer turns turbulent and the lecal heat transfer coefficient suddenly increases to a high value and then, with
increasing x the local heat transfer coefficient drops more gradually (as x™*%) as compared to the laminar por-
tion.

(ii) In the laminar region, the heat transfer coefficient varies from an infinite value at x = 0 to about 12 W/ (m*C) at
X = 0.47 m. And, average heat transfer coefficient for the laminar region, as already calculated, is 25.148 W/
{m-°C).

(iii) In the turbulent region, the heat transfer coefficient varies from a value of about 56 W/ (m*C) at x = 047 m to
about 51 W/(mC) at x = 0.75 m. And, average heat transfer coefficient for the turbulent region, as already
calculated, is 53.229 W /{m’C}.

{iv) Avera§e heat transfer coefficient over the entire plate, for the combined laminar and turbulent regions, is 35.441
W/ (m"C).

9.8.4 Analogy Between Momentum and Heat Transfer -
We have shown that the two-dimensional equations for the momentum transport and energy transport have
identical forms. It is reasonable to assume that their solutions also must have some correspondence to each other.

Solution of momentum equation leads us to a relation for the skin friction coefficient and the drag force;
similarly, solution of the energy equation leads us to an expression for the heat transfer coefficient. So, we seek an
analogy or relation between the fluid friction and heat transfer coefficients:

9841 Ralation betweon the flvid friction and hoat tramsfor coefficient in laminar flow for a flet plate. Recollect that
the average Nusselt number for laminar flow over a flat plate is given by:

Nu, = 0.664-/Re -Pro-3% -(9.41)
This can be rewritten as: .
-1 -2
Nia_ _ 0664 Ref? -Pr3 (@)

Rey - Pr
Now, the LHS of Eq. ais a élimensionless number known as “Stanton number”, 5¢,.

Substituting for Nu,, Re; and Pr from their respective definitions, we get:
he  _ _ha

5f, = =
“pll -Cp G-Cp ®)
where G = p.U (kg/ {ms), is known as mass velocity.
Therefore, we write:
-2
St, = 0.664-Re/Z -Pr 3 o0
2 =
ie St Pr3 = 0.664 Re,? wfd)
However, we have already shown that:
1 (t 1.328
C;, = —-J Cpdx = (9.32)
i L Js fx "RL’L
ie.
C hal
—if'f— = 0.664- Re? .(e)
Then, comparing Egs. d and e, we can write:
2 ¢
St,Pr3 = Tf“ .(9.86)
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This relation is known as ‘Colburn analogy’ and it gives a simple relation between the heat transfer coeffi-
cient and the friction coefficient. Eq. 9.86 is valid for values of Pr between (.6 and 50. LHS of Eq. 9.86 is also
known as ‘Colburn jfactor’, and is generally used to correlate heat transfer coefficient with Reynolds number.

Note the important significance of this analogy: just by knowing the friction coefficient, one can predict the
heat transfer coefficient for that situation; and conducting experiments to determine friction coefficient is, many
times, practically much easier than conducting experiments to determine heat transfer coefficients.

9.84.2 Reynolds and Colbum onalogies for turbulent flow over a flat plate. Considering the laminar sub-layer adja-

cent to the plate surface, we have the relation for shear stress, aiong the X-direction and at y = 0:

T, = Ju-@ .{a}
and, heat flux at the surface in the y-direction is:
dT
g=—k ..{b}
dy
Combining Eqs. a and b:
k dT
q = o T —— (C)
u du

Now, if Prandtl number is unity, ie. if C, = k/p, we replace (k/g) in Eq. c by C,, and separating the vari-
ables, we write, assuming ¢ and 7 to be constant:

I ' (d)
7:-Cp

In Eq. d, subscript s indicates that 4 and 7 are considered at the surface of the plate.

Integrating Eq. d between the limits # = 0 when T =T, and v = U when T = T, gives:

A u=(T,-T) .{e)
-G,
-However, by definition, the local heat transfer and friction coefficients are given by:
.t
h,= s and, 7 = Cfx-p—
T,-T, 2
UZ
Then, Eq. e can be written as: h,-U = C-p- T-Cp
hy _ Nu, _Cp

i.e. St = = =
pU-C, Re, Pr 2
Eq. 9.87 is known as “Reynold’s analogy’ and it gives a relation between Nusselts number (i.e. heat transfer
coefficient) and the friction coefficient. Note that Reynolds analogy was derived with the assumption that Pr = 1
and is valid for most of the gases.
However, when the Prandtl number is different from unity, Colburn’s analogy, ie.
¢
St-Pr3 = %’i ' .(9.88)

..{9.87)

is applied. This is valid for values of Pr between (.6 and 50.

In practice, to apply the analogy between momentum and heat transfer, it is necessary to know the friction
coefficient Cy,. For turbulent flow over a flat plate, we have the empirical relation for local friction coefficient:

-1
Cp, = 0.0576- Re, (9.74)
Eq. 9.74 is valid for: 5 x 10% < Re, < 1(".

Exemple 9.11.  Air at 27°C and 1 atm flows over a flat plate at a speed of 2 m/s. Assuming that the plate is heated over
its entire length to a temperature of 60°C, calculate the heat transfer for the first 0.4 m of the plate. Also, compute the
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drag force exerted on the fitst 0.4 m of the plate using Reynolds analogy. Assume air to be a perfect gas with R = 287

HkgK and C, = 1.006 k] /kgK.
Solutton,
Data:

T, = 60°C L:=04m B:=1m

T,=27°C U:=2m/s

T4T,
2

+273 T;=3165K

f :

R = 287 ]/ (kgK)
P = 101325 x 10° Pa
Properties at T

vi=172x10° m?/s  C,:= 1006 J/kgK  Pr:=071

ie. p=1115kg/m’
Reynolds number:

Re; = ﬂ'{
. 14
ie. Re; = 4.65 x 10

i.e. flow is laminar.
Therefore, we have for average Nusselts number:

1
Nu, = 0.664- JRe, -Pr3
Le. Nu, = 127.752
Average heat transfer coefficient:

b= Nu, -k

a

ie. h, = 8.655 W/(m*K)

Heat transfer rate:

W/(m?K)

Q= hAL-B) (T, -TJ)W
ie. Q=11424 W
To calculate the drag force:
We have, for mass velocity:
G = p-Ukg/(sm?)
Therefore, Stanton number, by definition:

5t = h,
GC,
ie. St = 3.856 x 1077
Check: St = Y _ 3869 x 107
Re; -Pr
By Reynolds Analogy: St = Cp/2
ie. Cpi=2-8¢
ie. G =7713 % 1073
Drag, force:
u!
Iy = Cf'p'—-z—w(L-B)
ie. Fp=6883%x107° N

k:=00271 W/mK

(M.U. May 1999).

(film temperature)

(Gas constant for air)
(atmospheric pressure)

P
pi= —— kg/m®
P RT, g/m

{less than Re,, = 5 x 10°)
.(9.41)
(average heat transfer coefficient)

(average heat transfer coefficient)

(heat Eransfer rate for the first 0.4 m length)
(heat transfer rate for the first 0.4 m length.)

{mass velocity)

(Stanfon number)

(checks.)

(skin friction coefficient)

{drag force exerted on first 0.4 m length.)

9.9 Flow Across Cylinders, Spheres and Other Bluff Shapes and Packed Beds
So far, we studied external flow over a flat plate. Next, we shall consider flow across cylinders, spheres and other
biuff shapes such as disk or half cylinder. These cases are of considerable practical importance. Case of single
cylinder in cross flow is identical to the case of cooling of an electrical cable by forced convection by air flowing
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across it; also determination of local velocities in a flow by ‘hot wire anemometer” invoives the heat transfer from
a single platinum wire maintained at a constant temperature {or by passing a constant current through it} and
correlating the change in current (or change in resistance) to the velocity of flow. Heat transfer from a sphere is
important when we are interested in performance of systems where clouds of particles are heated or cooled in a
stream of fluid. Such an understanding is generally required when we correlate data for heat transfer in fluid
beds, especially in the field of chemical engineering. If the particle is of an irregular shape, then an equivalent
diameter is used in place of sphere diameter, i.e. D is taken as the diameter of an equivalent sphere that has the
same surface area as that of the irregular shape. Front portion of an aeroplane wing can be approximated as a
half cylinder while calculating the local heat transfer coefficients over the forward portion of the wing.

9.9.1 Flow Across Cylinders and Spheres

Now, the characteristic length taken to calculate the Reynolds numbser is the external diameter D of the cylinder
or sphere. And the Reynolds number is defined, as usual:

Rep = ——
14

where U is the uniform velocity of flow as it approaches the cylinder or sphere.
The critical Reynolds number for flow across cylinder or sphere is:
Re,, =2 x 10°
i.e. upto Re = 2 x 10°, the boundary layer remains laminar and beyond this value, the boundary layer becomes
turbulent.

Flow patterns for a flow across a cylinder are shown in Fig. 9.14. Fluid particles at the mid-plane of a stream
approaching the cylinder strike the cylinder at the “stagnation point’ and come to a halt, thus increasing the
pressure. Rest of the fluid branches around the cylinder forming a boundary layer that embraces the cylirider
walls. Pressure decreases in the flow direction and the velocity increases. At very low free stream velocities {Re <
4), the fluid completely wraps around the cylinder; as the velocity increases, boundary layer detaches from the
surface at the rear, forming a wake behind the cylinder. This point is called ‘separation point’. Flow separation
occurs at about £ = 80 deg. when the boundary layer is laminar and at about & = 140 deg. when the boundary
layer is turbulent.

Dirag coefficient (Cp): Drag force for a cylinder in cross flow is primarily due to two effects: one, ‘friction
drag’ due to the shear stress at the surface, and the other, ‘pressure drag’ due to the pressure difference between
the stagnation point and the wake. At low Reynolds numbers (< 4), friction drag is predominant, and at high
Reynolds numbers (> 5000), pressure drag is predominant. At the intermediate values of Re, both the effects

contribute to the drag.
U a

-,
R/

Stagnation point Separation point

Laminar boundary layer

Turbulent boundary layer
Laminar boundary layer /)

Separation point

FIGURE 9.14 Flow patterns for cross flow over o cylinder
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FIGURE 9.15 Drag Coefficient Versus Reynolds Number for Long Circular Cylinders and Spheres in
Cross-Flow

3 4 5 &

10 10 10

Average drag coefficient Cp, for cross flow over a cylinder and sphere are shown in Fig. 9.15. Then, the drag
force acting on the body in cross flow is obtained from:

2
Fp = Coran 2H N
where Ay, is the ‘frontal area’ i.e. area normal to the direction of flow.
Ay=LD ...for a cylinder of length L
.D?
and, Ay = d 2 ...for a sphere
In Fig, 9.15, there are 5 sections, a, b, ¢, d and e shown. Comments corresponding to these sections of the

figure are given below:

{a) At Re <1, inertia forces are negligible and the flow adheres to the surface and drag is only by viscous
forces. Heat transfer is purely by conduction.

(b) At Re = about 10, inertia forces become appreciable; now, pressure drag is about half of the total drag.

{C) At Re of the order of 100, vortices separate and the pressure drag predominates. :

(d) At Re values between about 1000 and 100,000, skin friction drag is negligible compared to the pressure
drag. Point of separation is at about & = 80 deg. measured from the stagnation point.

(e} At Re > 100,000, flow in the boundary layer becomes turbulent and the separation point moves to the
rear.

Heat transfer coefficient: Because of the complex nature of flow, most of the results are empirical relations
derived from experiments. :

Variation of local Nusselt number around the periphery of a cylinder in cross flow is given in Fig. 9.16. Nu
is high to start with at the stagnation point, then decreases as §increases due to the thickening of laminar bound-
ary layer. For the two curves at the bottom, minimum is reached at about & = 80 deg., the separation point in
laminar flow. For the rest of the curves, there is a sharp increase at about # = 90 deg. due to transition from
laminar to turbulent flow; Nu reaches a second minimum at about # = 140 deg. due to flow separation in turbu-
lent flow, and thereafter increases with 8, due to intense mixing in the turbulent wake region.

Between &= 0 and 80 deg. empirical equation for locgl heat transfer coefficient is:

hc D At"u 0.5 g 3
Nu(8) = B@O)D 1.14-[9.——5—) -Pr0‘4-[l —(—] } -(9.89)
. k # 90 _
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